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Executive Summary 
This document consists of the Deliverable “D3.1: Remote sensing technologies and multi-modal data 

aggregation protocols” of the European Horizon Europe project “NESTLER: oNe hEalth SusTainabiLity 

partnership between EU-AFRICA for food sEcuRity”. D3.1 offers a detailed exploration of how Internet 

of Things (IoT) sensors and devices, as well as remote sensing solutions, are being utilized in the NESTLER 

project. This includes their application in environmental monitoring and smart agriculture practices, 

including crop farming, livestock, and aquaculture monitoring across various regions in Africa. 

The keystones of this document are summarized as follows: 

1. Extensive analysis of the technological background of various IoT sensors and remote sensing 

solution, accompanied by an initial market analysis for each. 

2. Definition of the data preconditions and requirements for each pilot partner operating in 

different regions across Africa. 

3. Thorough presentation of IoT sensors for environmental monitoring. These sensors are part of 

the SynField Ecosystem and are utilized within the NESTLER project for monitoring crop farming, 

livestock, and aquaculture. 

4. A device designed for assessing the quality of cassava crops by measuring the starch content. 

Explanation of the device's development over the course of the project, including the calibration 

process and field testing. 

5. A wireless communication system capable of transmitting data from IoT sensors and devices in 

the field to a central database over long distances, specifically designed for use in rural areas 

without cellular infrastructure. 

6. Identification of the necessary parameters and selection of suitable devices for the monitoring of 

livestock and aquaculture, with a particular emphasis on the health of poultry and fish. 

7. Design AI algorithms able to monitor the health of poultry and fish. Showcasing those algorithms 

in two specific use cases, which are Poultry Fleas and Fish Digestion Disorder.  

8. Presentation of a remote sensing solution in agricultural monitoring using satellite images and 

drones. Identification of satellite data intended to be used for the NESTLER project as well as the 

smart drone solution considered to be used. 

9. Development of various AI and analytics-based methods for identifying pest infestations using 

data from remote sensing. 

10. Description of existing algorithms, methods, and services for extracting knowledge from data 

derived from remote sensing. 

The objective of this deliverable is to analyze various IoT sensors and devices employed in environmental 

and crop farming monitoring, including those used for measuring crop quality. Additionally, it defines 

the parameters, devices, and techniques utilized in livestock and aquaculture monitoring. Furthermore, 

it presents the remote sensing solutions, which are satellite and drone imagery, used in the NESTLER 

project, along with the methods and techniques for extracting information from these sources. 
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1. Introduction  
In the evolving landscape of agricultural technology and environmental monitoring, the integration of 

cutting-edge systems such as Internet of Things (IoT) sensors, remote sensing solutions, data analysis 

techniques and advanced Artificial Intelligence (AI) models are revolutionizing the way we approach food 

production, biodiversity conservation and sustainable agriculture practices. Specifically, IoT sensors and 

devices enables the real-time tracking of environmental conditions and livestock health, gathering 

extensive data that farmers can use for immediate field oversight. Additionally, the data can be utilized 

by advanced AI systems and analytical methods to provide insights, yielding valuable insights that lead 

to informed decision-making and improved management of resources, ultimately promoting sustainable 

farming practices. Complementing this, remote sensing technologies provide a bird's-eye view, capturing 

high-resolution images and multispectral data from satellites and drones. This data, when analyzed, can 

reveal patterns in crop growth and environmental stressors, such as pest infestation, allowing for 

precision agriculture techniques that optimize crop yields and minimize environmental impact. Through 

advanced image processing and analytics, remote sensing acts as a crucial tool for large-scale agricultural 

strategy and land management decisions. Data aggregation plays a critical role in synthesizing the 

information from IoT sensors, devices and remote sensing. By combining the detailed, on-the-ground 

data from IoT devices that monitor specific parameters such as soil moisture, temperature, and crop 

health with the broader, area-wide insights from remote sensing technologies like satellite imagery, a 

more layered and contextual analysis is possible. This aggregated data allows for the creation of 

comprehensive models that can predict outcomes, optimize resource allocation, and enhance overall 

farm management.  

The deliverable explores advanced sensors, technology and services used in monitoring of agriculture, 

livestock, and aquaculture. It also showcases the potential of remote sensing in data collection, with an 

emphasis on the use of satellite and drone imagery. Furthermore, it presents services that facilitate the 

extraction of actionable insights from the data acquired through remote sensing techniques. The data 

gathered from these diverse sources can be integrated and leveraged by various services with the goal 

of equipping farmers with actionable insights and knowledge to make informed decisions according to 

their needs. The deliverable begins by providing an overview and technological background of various 

sensors and technologies, accompanied by a preliminary market analysis. Following this, it outlines a set 

of data requirements gathered by different pilot studies, aiming to align the data sources and services 

offered by the platform with these specified needs effectively. 

The deliverable focuses on demonstrating the potential of IoT sensors and devices in capturing critical 

environmental data, thereby enabling more precise and efficient agricultural practices. It highlights the 

SynField ecosystem, an advanced IoT-based platform for environmental monitoring. The core of this 

ecosystem is the SynField node, which can be integrated with a range of sensors and actuators. It's 

capable of measuring various environmental parameters, including air temperature, wind speed and 

direction, humidity, leaf wetness, and soil characteristics. Additionally, the ecosystem includes 

SynWater, a component specifically designed for water quality assessment. It is equipped with sensors 
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to measure several water quality parameters, such as water temperature and pH. Another integral part 

of the ecosystem is the SynAir node, dedicated to air quality monitoring. It can measure air quality 

characteristics like Particulate Matter, temperature, and CO2 levels. Overall, the SynField ecosystem 

represents an integrated solution for comprehensive environmental monitoring, suitable for 

applications in crop cultivation, livestock rearing, and aquaculture farming. Moreover, the deliverable 

introduces a crop quality measuring device, specifically tailored for determining the starch content in 

cassava. This device stands out for its portability, affordability, and user-friendliness, making it well-

suited for field applications. It also details the ongoing practical performance assessment of this test 

instrument, conducted through field experiments at the International Institute of Tropical Agriculture 

(IITA) in Ibadan, Nigeria. A wireless communication system designed to transmit data from IoT sensors 

and devices over long distances, especially from rural areas with inadequate cellular infrastructure, is 

presented. This system has been adapted to be deployable on UAVs (Unmanned Aerial Vehicles), 

enabling real-time data transmission to a central database. Additionally, the system has been engineered 

with careful attention to power efficiency, and with specifications for weight and size that ensure it is 

compatible with UAV deployment. 

Furthermore, the document presents sensors and techniques for livestock and aquaculture monitoring, 

highlighting specific use cases like poultry health and fish monitoring systems. It outlines the essential 

parameters for measurement and the appropriate technologies for these tasks, which include high-

resolution cameras and microphones for livestock. Additionally, it presents advanced AI systems utilized 

for tracking the health of poultry and fish. These tools and techniques represent the forefront of 

agricultural technology, aimed at optimizing animal welfare and farm productivity.  

Regarding the field of remote sensing, the document highlights the application of those solutions in 

agriculture, focusing on the use of satellite imagery and drones for data collection and monitoring. These 

technologies offer ground-breaking methods for observing and managing agricultural environments, 

providing vital data for crop health assessment, and overall environmental conservation. The document 

also addresses the issue of pest infestation in crops, particularly describing the various ways that remote 

sensing technology can help. It specifically mentions the use of satellite imagery for locust detection and 

presents combined solutions that utilize both drone footage and close-range observations for 

comprehensive pest infestation detection. Finally, remote sensing data can be utilized via various 

algorithms and methods to extract vital information from this data, such as crop health and land 

condition monitoring, and integrates weather remote sensing services. These tools and techniques 

enable the analysis of temperature variations, precipitation levels, and other meteorological factors, 

enhancing decision-making in areas like irrigation and pest management in response to climatic changes. 

1.1. Intended Audience 
The intended audience for this deliverable is diverse and encompasses professionals and stakeholders 

in the fields of agriculture, environmental science, and technology. It is particularly valuable for 

agricultural technologists, environmental scientists, and IoT specialists seeking to integrate advanced 

sensor and remote sensing technologies in their work. The document is also relevant for policymakers 

and development practitioners who are involved in shaping and implementing sustainable agricultural 
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practices and environmental monitoring policies. Additionally, it serves as a critical resource for 

academics in these fields, providing comprehensive insights into the latest technological advancements 

and their practical applications. Finally, this report is useful internally, to the project partners and 

especially Work Package (WP) 3, WP4 and WP5. 

1.2. Relations to other activities  
This deliverable primarily relates to all the Tasks of WP3 “Remote sensing technologies and multi-modal 

data aggregation”. The overall objective of the work package is to develop technologies with remote 

sensing capabilities and to create and utilize IoT sensors and devices that monitor environmental 

variables and crop quality, alongside developing methods for multi-modal data aggregation. The data 

sources described in this deliverable are crucial for formulating AI algorithms and automated methods 

as part of WP4, such as AI algorithms for external weather impact assessment on agricultural farming 

and for crop yield quality. Last, but not least, the document provides useful feedback to the future 

integration and validation activities, as well as to the preparation of the pilots in WP5.  

1.3. Document overview 
The rest of the document is divided into the following sections: 

• Section 2 provides an overview and background on various IoT technologies, devices and remote 
sensing techniques used in modern agriculture. This section also includes an initial analysis of the 
market, detailing the current state.  

• Section 3 focuses on detailing the specific data needs for NESTLER pilot projects. It explores how 
data could be utilized within the project to enhance agricultural practices and environmental 
monitoring. 

• Section 4 delves into IoT sensors specifically designed for environmental monitoring. It discusses 
the NESTLER environmental factors and the SynField ecosystem, providing details about the 
different nodes and systems within this ecosystem and their applications in pilot projects. 

• Section 5 is dedicated to the technologies used for measuring crop quality. It includes various 
parameters and metrics for crop quality assessment of cassava, the evolution of devices used for 
this purpose, and the calibration and field tests of these devices. 

• Section 6 examines the wireless communication interfaces used in agricultural monitoring 
systems. 

• Section 7 focuses on livestock and aquaculture monitoring, outlining the sensors and techniques 
used for monitoring the health and conditions of poultry and fish. It includes a detailed look at 
the parameters monitored, the IoT sensors and devices employed, and the overall monitoring 
systems in place. 

• Section 8 explores the use of remote sensing technologies, such as satellite imagery and drones, 
in agricultural monitoring. It discusses the role of these technologies in detecting pest 
infestations and other applications in agriculture. 

• Section 9 addresses the algorithms and methods for interpreting data obtained from remote 
sensing services. 

• Section 10 provides a summary of key findings and reflects on the implications of these 
technologies for future agricultural and environmental monitoring practices. 
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2. Technology Overview and Background 
This section provides a comprehensive exploration of the various sensors and remote sensing 

technologies that are used for agricultural monitoring and management. Specifically, it describes the role 

of IoT sensors in measuring environmental factors as well as the methodologies behind crop quality 

measurement devices. Moreover, the data sources and methods for livestock and aquaculture 

monitoring are analyzed. Lastly, the section also examines the broad field of remote sensing solutions, 

including data from satellites and drones. Each subsection is designed to provide a detailed technological 

overview of its respective field, setting the stage for understanding how these advanced technologies 

are applied in agriculture. In addition, it presents an initial analysis of the market for each of these 

technological areas. 

2.1. IoT Sensors for micro-clima, leaf, soil and water quality monitoring  
According to United Nations Economic Commission for Europe (UNECE) environmental monitoring is a 

tool to assess environmental conditions and trends, support policy development and its implementation, 

and develop information for reporting to national policymakers, international forums and the public1. 

Since the key objective in environmental monitoring is to identify, administer and reduce the impact an 

activity has on an environment, following the respective laws and regulations, a textual or graphical 

depiction of the state of the affected environment is produced that also identifies resulting 

environmental changes and potential threats.  

According to many relevant use cases [1], an environmental monitoring platform usually encompasses a 

set of distributed sensors that support wired/wireless connectivity, cloud computing and visibility tools 

that formulate a system for monitoring conditions, operations and equipment and/or react in case of 

events that can harm the environment. Following recent technological developments in the field of 

autonomous interconnected devices and sensors that can collect and communicate data, an 

environmental monitoring system can utilise IoT equipment for collecting the necessary field data [2].  

These IoT enabled monitoring platforms can discover problematic environmental conditions like air 

pollution [3], flood detection [4], water quality degradation [5] and pest detection [6], that otherwise 

would be largely unidentified, normalised or underestimated and thus enabling involved actors to take 

action for the reduction of their negative environmental footprint while warding off other hazardous 

situations. Consequently, IoT is emerging as a favourable technology that can support the provision of 

real-time data, statistics and awareness regarding the environmental impact of the monitoring activities 

[7], as well as facilitate the compliance with environmental protection treaties and frameworks. 

2.1.1. IoT technology for environmental monitoring  
IoT-based environmental monitoring platform presents a number of advantages such as: 

 
 
1 Environmental monitoring (https://unece.org/environmental-monitoring) 

https://unece.org/environmental-monitoring
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• Enhanced understanding of the monitoring environment's conditions: With the help of the 
deployed IoT device network that is supplying continuously real-time data, the operators can 
understand with greater detail the environment and quantify its characteristics. 

• Advanced efficiency: Real-time data feeds, from the IoT remote sensors, are enabling the 
monitoring platforms to identify and take care of any problematic circumstances in a proactive 
or reactive manner. 

• Improved sustainability: IoT environmental monitoring systems enable the managing actors to 
locate areas that can achieve reduced operational environmental overhead, thus facilitate an 
upgrade towards a more sustainable procedure in the course of time. 

• Environmentally friendly operation: Following the popularity of the environmental neutral 

operation principle, companies strive to comply with environmental standards in order to certify 

that they implement a progressive methodology towards environmental safety. The application 

of an IoT environmental monitoring platform provides greater assurance that standardized 

measures and controls are applied during operational procedures, alleviating any environmental 

concerns.  

Concerning the environmental factors that are candidates for observation, they can be categorised into 

three main fields of environmental monitoring namely micro-clima/ air, soil, and water. Moreover, 

sensors that keep track of the selected environmental factors values can be classified according to the 

different measurement elements as follows: 

2.1.1.1 Micro-clima/air monitoring 
In this category of sensors, we may include sensors measuring: 

• Temperature and humidity: Their values not only affect agricultural and livestock production, 
but are also important to human health. Indoor or outdoor measurements can be obtained 
through humidity and temperature sensors. 

• Air quality: Air quality monitoring is emerging as one of the most important parameter of 
environmental awareness, since poor air quality conditions will lead to chronic diseases. 
Respective sensors measure suspended fine particles, mainly referring to particulate matter with 
2.5 or 10 microns diameter (PM2.5 or PM10), formaldehyde, Total Volatile Organic Compound 
(TVOC) and other harmful substances, as well as carbon dioxide, negative oxygen ions and other 
parameters. 

• Atmosphere: Environmental sensors that are included to this category can measure atmospheric 
pressure, sunlight and noise. Atmospheric pressure data can lead to valid weather forecasts. 
Moreover, monitoring sunlight is helpful for the evaluation of agricultural production since it 
affects plant growth and development, while noise levels are relevant to the quality of life of a 
living environment. 

• Wind speed and direction:  In order to present valid meteorological information, wind speed and 
direction is monitored with the help of appropriate sensor equipment. With their help, 
meteorological changes can be analyzed and timely warnings can be issued enabling the 
successful handling of forecasted meteorological disasters. 
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• Rainfall: Apart from the rainfall values, respective sensors are monitoring evaporation levels. 
Continuous rainfall will almost certainly lead to flood calamities while abnormal evaporation 
conditions can easily cause drought. Since both hardships not only influence agriculture 
production, but also water reserves, industrial production and generally people’s living 
conditions, monitoring their values is frequently requested. 

• Radiation: Solar radiation levels can be measured from environmental sensors. Considering the 
fact that the state or evolution of most things on earth is relevant to some degree, directly or 
indirectly, with the corresponding level of radiation, it is helpful to keep track of its current values. 

• Gas: Concentrations of various gases in the atmosphere, or in closed spaces, are considered 
environmental factors and can be monitored with the help of relevant sensors. For instance, 
carbon dioxide increased concentrations intensify greenhouse effects and climatic change while 
overmuch levels of ozone affect plant photosynthesis activities and human health. Typical gas 
sensors can monitor the level of carbon monoxide (CO), carbon dioxide (CO2), ammonia (NH3), 
methane (CH4), ozone (O3), and sulfur dioxide (SO2) gas concentrations. 

2.1.1.2 Leaf & Canopy monitoring 

In this category we may consider sensors measuring the leaf wetness parameters. Leaf wetness is a 
critical factor in understanding plant health, disease risk, and microclimatic conditions. Several 
technologies are used to measure leaf wetness, each with its advantages and limitations. Main 
technologies for measuring leaf wetness include: 

• Electronic Leaf Wetness Sensors (LWS). These sensors typically consist of a flat surface that 
mimics the properties of a leaf. The sensor detects moisture on its surface using electrical 
conductivity or capacitance measurements. When water droplets or condensation form on the 
sensor, it alters the electrical properties, indicating the presence of wetness. The main advantage 
of this technology is that provides continuous and real-time data and can be integrated into 
weather stations and automated systems, while maintenance is simple and low cost. However, 
the sensor accuracy is rather limited, while sensitivity can vary depending on environmental 
conditions. 

• Optical sensors & Infrared Thermography. Optical Sensors use optical methods, such as light 
reflection or transmission, to detect the presence of water on leaves. Changes in light behaviour 
caused by water droplets can indicate wetness. Infrared cameras can detect differences in leaf 
surface temperature. Wet leaves typically have different thermal properties compared to dry 
leaves, allowing the detection of wetness through temperature variations. The main advantages 
of these techniques are that they are non-contact methods, allowing remote sensing and may 
cover large areas quickly. However, the equipment costs and the maintenance/ calibration costs 
make them inappropriate for low income countries. 

• Wetness Sensors Based on Hygroscopic Materials. These sensors use materials that absorb 
moisture, causing them to change shape, colour, or other properties. The changes in these 
properties are then measured to indicate the level of wetness. The main advantage is that they 
can be sensitive to minute changes in moisture. However, they may require frequent calibration 
and can be less durable and sensitive to environmental changes. 
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• Capacitive Sensors. These sensors measure changes in capacitance caused by moisture on the 
sensor's surface, which can be correlated to leaf wetness. The main advantage is that they can 
be highly sensitive and responsive and suitable for integration into automated systems. However, 
they require frequent calibration for specific environments and may be sensitive to factors like 
temperature and dust. 

• LiDAR Technology. The last couple of years, LiDAR (Light Detection and Ranging) technology is 
increasingly being integrated into smart agriculture/precision farming applications to monitor 
leaf and canopy. LiDAR technology may be used for 
o Topography and Terrain Mapping. Such as a) elevation mapping, creating detailed 3D maps 

of agricultural fields, capturing the precise elevation of the terrain. This helps farmers 
understand the field’s topography, which is crucial for water management, soil conservation, 
and optimizing planting strategies And b) Slope Analysis: By analyzing the slopes and 
contours of the land, farmers can better plan irrigation, reduce soil erosion, and determine 
the best planting patterns to maximize crop yield. 

o Crop Health Monitoring, including a) Vegetation Analysis: LiDAR can assess the height and 
density of crops, providing insights into plant health and growth stages. This data helps in 
identifying areas with poor growth, allowing for targeted interventions, and b) Canopy 
Structure Analysis: Detailed 3D models of crop canopies can be generated to study plant 
structure, leaf area, and biomass. This is particularly useful in monitoring the effects of 
different agricultural practices on crop development. 

o Water Resource Management. Based on Water resources, LiDAR may support a) Irrigation 
Planning: LiDAR helps in designing efficient irrigation systems by mapping water flow paths 
and identifying areas prone to waterlogging or drought. This ensures optimal water 
distribution across the field and b) Flood Risk Assessment: In regions prone to flooding, LiDAR 
can be used to model potential flood scenarios, helping farmers take preventive measures 
to protect their crops. 

o Pest and Disease Management. LiDAR can detect anomalies in crop growth that may 
indicate the presence of pests or diseases. Early stage detection allows for targeted 
treatment, reducing the spread and impact of infestations. Moreover, LiDAR can also be used 
to identify areas where pests are likely to thrive, enabling pre-emptive actions. 

LiDAR technology used to be too expensive for smart farming. However, in recent years, the cost 
of technology has decreased significantly, making it more accessible for agricultural applications. 
While low-cost LiDAR systems are becoming more available, they may have significant limitations 
in terms of accuracy, range, and data resolution compared to higher-end models. Moreover, 
LiDAR systems can be affected by Environmental Conditions, such as dust, dirt, and moisture, 
common in agricultural environments. It's important to choose systems that are robust and 
designed for harsh conditions. Last but not least, even low-cost/low accuracy LiDAR still have a 
cost in the range of $1,500, which reflects only the basic hardware without additional integration 
that may be needed. The total cost may significantly increase if multiple units or advanced data 
processing capabilities are needed. 

2.1.1.3 Soil Monitoring 

Soil sensors and technologies play a crucial role in precision agriculture, environmental monitoring, and 
land management. Since soil sensors are utilised in most cases for measuring factors that affect crop 
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growth, they monitor soil parameters such as temperature, moisture, electrical conductivity, nitrogen, 
phosphorus, potassium and pH, providing information that is mandatory for the operation of smart 
agriculture or smart irrigation systems. In detail, we may highlight: 

• Soil Moisture Sensors. Soil moisture sensors measure the volumetric water content in the soil. The 
most common technologies include:  

o Capacitance Sensors: These sensors measure the dielectric constant of the soil, which 
changes with moisture content. The sensor sends a signal through the soil, and the 
capacitance value is used to estimate moisture content. The main advantage of this 
technology is the fast response time and the relatively inexpensive installation. However, 
they require calibration for different soil types and can be affected by soil salinity. 

o Time Domain Reflectometry (TDR) Sensors: TDR sensors send an electromagnetic pulse along 
a probe, and the time it takes for the pulse to return is used to calculate the soil's dielectric 
constant, which correlates with moisture content. The main advantage of the technology is 
the high accuracy and reliability and the low influence of the soil salinity. On the other hand, 
it is a quite expensive solution with complex installation. 

o Frequency Domain Reflectometry (FDR) Sensors: FDR sensors measure the change in 
frequency of an electromagnetic field caused by soil moisture. They are accurate and suitable 
for continuous monitoring, but may be affected by soil salinity and temperature and require 
calibration for different soil types. 

o Gravimetric Method: A traditional method where soil samples are weighed before and after 
drying to calculate moisture content. The main advantage is the high accuracy. However, it is 
a labor-intensive method and not suitable for real-time monitoring. 

• Soil Electrical Conductivity (EC) Sensors. Electrical conductivity sensors measure the ability of soil 
to conduct electrical current, which is related to soil salinity and nutrient content. The sensor 
technologies utilized of EC include: 

o Electromagnetic Induction (EMI) Sensors: These sensors generate an electromagnetic field 
and measure the induced currents in the soil, which are affected by soil conductivity. The 
main advantage is that it is a non- invasive technology that can cover large areas. However, 
it is affected by soil moisture and temperature and requires proper analysis and 
interpretation of data. 

o Contact EC Sensors: These sensors use electrodes inserted into the soil to directly measure 
electrical conductivity. Their advantage is that they provide direct measurement of soil EC. 
However, they can be affected by soil moisture and require maintenance of electrodes. 

o TDR and FDR Sensors: Some TDR and FDR sensors can also measure electrical conductivity 
by analyzing the signal attenuation. Their advantage is that they may measure both moisture 
and EC from a single sensor, while the main limitation that they require careful calibration 
for accurate EC measurement. 

• Soil Temperature Sensors. Soil temperature is crucial for seed germination, root development, 
and microbial activity. Relevant technologies include: 

o Thermocouples: These sensors consist of two different metals that generate a voltage when 
there is a temperature difference between the junctions. They are accurate and reliable, 
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suitable for a wide temperature range, but they may be sensitive to electromagnetic 
interference and require careful installation. 

o Thermistors: Thermistors are temperature-sensitive resistors, where the resistance changes 
with temperature. They are very sensitive, accurate and relatively inexpensive, thus widely 
used. However, the temperature range is rather limited and require careful calibration. 

o Resistance Temperature Detectors: These sensors measure temperature by correlating the 
resistance of the sensor element with temperature. They are very accurate and stable over 
time, but more expensive than thermocouples and thermistors and have slower response 
time. 

• Soil Water Potential Sensors. Soil water potential indicates the energy status of water in soil and 
is a measure of the availability of water to plants. 

o Tensiometers: Tensiometers measure soil water potential by using a porous ceramic cup 
filled with water, connected to a vacuum gauge. The gauge measures the tension as water 
moves in or out of the cup to reach equilibrium with the surrounding soil. They offer direct 
measurement of soil water potential and they are simple and inexpensive sensors. However, 
they are limited to measuring water potential near saturation and require maintenance, 
especially in dry conditions. 

o Granular Matrix Sensors: These sensors use a porous matrix that equilibrates with the soil 
water. The electrical resistance of the matrix is measured, which correlates with soil water 
potential. These sensors are more durable than tensiometers in dry conditions and more 
suitable for a wider range of soil moisture conditions. However, they require calibration for 
different soil types and they are less accurate than tensiometers at high water potentials. 

o Dielectric Sensors (Capacitance-based): Similar to moisture sensors, these measure changes 
in dielectric constant related to water potential. These sensors are suitable for continuous 
monitoring and can provide real-time data. However, they can be affected by soil 
temperature and salinity and require calibration for specific soil conditions. 

• Multi-parameter Sensors. These are integrated sensors that can measure multiple soil properties 
(e.g., moisture, temperature, EC) simultaneously. They are often based on capacitance, TDR, or 
FDR technologies and provide a comprehensive view of soil conditions. Their main advantage is 
that they offer comprehensive data from a single installation and they are useful for large-scale 
monitoring.  

Finally, traditional soil sampling followed by laboratory analysis for moisture, EC, nutrients, and other 
properties may apply. This approach is more accurate and comprehensive and provides detailed analysis 
of soil composition, but it is not suitable for real-time monitoring. 

2.1.1.4 Water level & Quality Monitoring 

There are different sensor technologies for measuring the water level, pressure and quality. These 
parameters are quite important not only for precision agriculture, but also for aquaculture applications. 
We may highlight: 

• Water level and pressure: Monitoring of liquid level and pressure can provide important 
information about rivers, lakes and other water sources like water tanks, wells or springs enabling 
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the operation of flood or drought prevention mechanisms as well as automatic irrigation systems. 
Technologies that may be deployed include: 
o Float Sensors. Float sensors use a buoyant object attached to a mechanical arm or a 

potentiometer. As the water level changes, the float moves up or down, translating into a 
measurable output. The main advantage of these sensors is that they are simple, cost-
effective and quite reliable for small to medium water bodies. On the other hand, they have 
mechanical parts, which may wear out over time and can be affected by debris or vegetation. 

o Pressure Transducers. These sensors measure water level by detecting the pressure exerted 
by the water column above the sensor. The pressure reading is converted into a water level 
measurement. They are quite accurate, especially in deep water and suitable for both open 
water and confined spaces like tanks or wells. However, they requires protection from silt and 
debris and periodic calibration. 

o Capacitive Sensors. Capacitive sensors detect water level by measuring changes in 
capacitance as the water level rises or falls along a sensing rod or cable. They are non-contact 
or semi-contact, depending on design and can be used in a variety of liquids, including 
corrosive ones. On the other hand, they are sensitive to temperature and composition of the 
liquid and require regular calibration. 

o Ultrasonic Sensors. Ultrasonic sensors measure the distance to the water surface by emitting 
ultrasonic waves and detecting the reflected waves. The time taken for the echo to return is 
used to calculate the water level. They are able to make measurements remotely (non-
contact measurement) and they are suitable for a wide range of water bodies. However, they 
can be affected by temperature and humidity and may have difficulties in very turbulent or 
foamy water. 

o Radar Sensors. Similar to ultrasonic sensors, they use microwave radar waves, radar sensors 
measure water level by calculating the time it takes for the radar wave to bounce back from 
the water surface. Their main advantage is their high accuracy and reliability. They perform 
well in various environmental conditions, including fog, rain, and darkness. On the other 
hand, they are more expensive than ultrasonic sensors and not suitable for wide deployment 
in low income countries. 

o Optical Sensors. Optical sensors measure water level by detecting changes in light 
transmission or reflection caused by the presence of water. They are non-contact and highly 
precise sensors, suitable for small or confined spaces. However, they can be affected by 
turbidity or suspended particles in the water and they are more expensive than other options. 

o Bubbler Systems. Bubbler systems measure water level by releasing a constant stream of air 
bubbles into the water and measuring the pressure required to maintain the flow. The 
pressure correlates with the water depth. They are accurate and reliable, especially in moving 
water. However, they require continuous air supply, maintenance and they are more complex 
and costly than simpler sensors. 

• Water quality: Since the survival and growth of all living creatures on earth is tightly connected 
to water, measuring the levels of water contamination formulates the basic functionality of most 
environmental monitoring systems. For example, monitoring the levels of pH, electrical 
conductivity (EC), dissolved oxygen (DO), residual chlorine and turbidity provides valuable 
information regarding water treatment results, aquaculture industry and sewage treatment. 
Sensors utilized for water quality include: 
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o pH sensors, which measure the acidity or alkalinity of water by detecting the hydrogen ion 
concentration. Typically, they use a glass electrode combined with a reference electrode. 

o Dissolved Oxygen (DO) Sensors, which measure the amount of oxygen dissolved in water, 
which is crucial for aquatic life. There are two main types of DO sensors electrochemical 
(Clark-type) and optical (luminescent). 

o Conductivity Sensors, which measure the electrical conductivity of water, which is directly 
related to the concentration of dissolved salts and other ions. 

o Turbidity Sensors, which measure the cloudiness or haziness of water, which is caused by 
suspended particles. This is typically done using optical methods, such as light scattering or 
attenuation. 

o Total Dissolved Solids (TDS) Sensors, which measure the concentration of dissolved 
substances in water, often using electrical conductivity as a proxy. 

o Oxidation-Reduction Potential (ORP) Sensors, which measure the ability of water to oxidize 
or reduce substances, providing insight into its chemical properties and contamination levels. 

o Ammonium and Nitrate Sensors, which measure specific ions (NH4+ and NO3-) in water, 
providing crucial information on nutrient levels, which is important for managing 
eutrophication and agricultural runoff. 

o Chlorine Sensors, which measure the concentration of free or total chlorine in water, which 
is important for ensuring proper disinfection in drinking water and swimming pools. 

2.1.1.5 Insect Traps technology 
Insect traps technology in combination with automated image processing/photographs analysis and AI 

may be utilized as supportive mechanism for reducing crop losses and chemical usage. For example, it is 

viable to build a device that traps insects/pests and identify them using AI technology [8]. Traps may use 

pheromones to attract pests, which are photographed by a camera in the device. By leveraging large 

pests’ databases, AI algorithms may identify various pest species, such as cotton bollworm, which can 

damage lettuce and tomatoes.  

Once identified, the system may use location and weather data to map out the likely impact of the insects 

and push the findings as an app notification to farmers. These AI-driven insights enable timely and 

targeted interventions, significantly reducing crop losses and chemical usage. 

NESTLER has analysed these off-the-self solutions. However, they are quite expensive and not directly 

exploitable from project industrial partners, thus have not been adopted in the project.  

2.1.2. Market analysis and sensor providers 
The Precision Farming market is expected [9] to grow up from USD 9.7 billion in 2023 to USD 21.9 billion 
by 2031 in a CAGR of 10.7%. The driving forces behind this expansion of the market include the swift 
uptake of cutting-edge technologies such as Internet of Things (IoT) and utilization of Artificial 
Intelligence (AI) in smart farming.  



HORIZON Research and Innovation Actions - 101060762: NESTLER 

Deliverable D3.1: Remote Sensing technologies and multi-modal data aggregation protocols 

Page 25 of 119 

 
Figure 1: Precision Agriculture Global Market (Source: [9]) 

Deployment of IoT devices across farms generates vast amounts of data, from soil moisture levels to crop health 
indicators. When integrated into agricultural data spaces, this data can be analyzed using AI algorithms to deliver 
precise farming insights. These technologies enable the implementation of precision agriculture techniques that 
optimize resource use, minimize environmental impact, and maximize crop yields.  

The IoT Analytics Market is projected to grow from USD 23.60 billion in 2024 to USD 110.26 billion by 2032, 
exhibiting a Compound Annual Growth Rate (CAGR) of 21.25% during the forecast period (2024 - 2032) [10], while 
IoT in Agriculture Market was valued at USD 15.17 billion in 2023 and it is projected to grow from USD 18.43 
Billion in 2024 to USD 71.75 billion by 2032, exhibiting a CAGR of 18.52% during the forecast period (2024 - 2032) 
[11]. Other less optimistic studies [12], consider that the IoT in Agriculture Market will increase to USD 54.45 Bn 
by 2031 (Figure 2) at a CAGR of 12.9% CAGR [13]. 

   
Figure 2: IoT in Agriculture Global Market (Source: [12]) 

Concluding, regarding the market conditions in the field of environmental sensors that is projected to 

experience a steady growth over the next years [14], the following table cites vendors with notable 

market presence in the category of environmental IoT sensors equipment. 
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Table 1: IoT environmental sensor vendors 
Vendor Type of Environmental Sensor 

Davis Instruments2 Weather stations, Air Quality Sensors, Data Collection Nodes 

Meter Group3 Weather monitoring, Soil Sensors, Leaf and NDVI Sensor 

Bosch Sensortec4 
Barometric Pressure, Temperature, Humidity, Air Quality Volatile 
Organic Compounds, CO, Particulate Matter, Hydrogen)  

Honeywell5 CO2, CO 

Synelixis6 Weather stations, Air and Water Quality Sensors, Data Nodes 

OMRON Corporation7 
Temperature, Humidity, Light, Barometric Pressure, Noise, 
Acceleration, Volatile Organic Compounds 

Nisshinbo Micro Devices Inc.8 Ambient Temperature, Humidity, Air Pressure, And Illuminance 

Murata Manufactoring Co9 
Temperature, CO2, Barometric Pressure, Soil sensor (temperature, 
water content, electrical conductivity) 

Disruptive Technologies10 Temperature, Water, Humidity, CO2 

Cisco Meraki11 Temperature, Water, CO2 

Trapview12 Automated Insect Traps 

2.2. Crop Quality Measurement  
A new handheld device developed at UCL to measure the quality - particularly starch content - of cassava 

root is evaluated. Cassava, a tropical root crop that serves as a staple for approximately 800 million 

people globally, holds immense economic significance for developing economies, particularly in sub-

Saharan Africa. The surge in global demand for gluten-free flour and biofuel has altered the profile and 

profitability of cassava, yet, smallholder farmers in the developing world remain largely excluded from 

this lucrative marketplace. Despite the crop's increasing use and demand, recent studies indicate that 

cassava production in Africa, accounting for waste, is primarily allocated for food consumption. Although 

there is potential in the region to increase yield and production capacity enough to meet both domestic 

and industrial demands, there are key challenges that need to be addressed. 

One significant barrier faced by farmers is the reliance on quality standards, notably the minimum starch 

content, to value their harvest. The average farmer lacks viable means to independently assess this 

 
 
2 Davis Instruments: https://www.davisinstruments.com/  
3 Meter Group: https://metergroup.com/  
4 Bosch Sensortec: https://www.bosch-sensortec.com/products/environmental-sensors/  
5 Honeywell: https://sps.honeywell.com/us/en/support/blog/siot/how-to-select-the-right-sensors-in-hvac-systems  
6 Synelixis: https://www.synelixis.com 
7 OMRON Corporation: https://components.omron.com/us-en/solutions/sensor/enverioment_seonsors  
8 Nisshinbo Micro Devices Inc: https://www.nisshinbo-microdevices.co.jp/en/applications/iot-module/environment-sensor/  
9 Murata Manufactoring Co: https://www.murata.com/en-global/products/sensor/library/iot  
10 Disruptive Technologies: https://www.disruptive-technologies.com/applications/environmental-monitoring-sensors  
11 Cisco Meraki: https://meraki.cisco.com/products/sensors/  
12 Trapview: https://trapview.com/  

https://www.davisinstruments.com/
https://metergroup.com/
https://www.bosch-sensortec.com/products/environmental-sensors/
https://sps.honeywell.com/us/en/support/blog/siot/how-to-select-the-right-sensors-in-hvac-systems
https://components.omron.com/us-en/solutions/sensor/enverioment_seonsors
https://www.nisshinbo-microdevices.co.jp/en/applications/iot-module/environment-sensor/
https://www.murata.com/en-global/products/sensor/library/iot
https://www.disruptive-technologies.com/applications/environmental-monitoring-sensors
https://meraki.cisco.com/products/sensors/
https://trapview.com/
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quality, raising the risk in supplying to high-value market hubs where logistics costs are borne by the 

farmer. Encouraging smallholder farmers to intensify production has proven challenging, with 

preferences often favouring larger-scale farmers and processors. This places economically 

disadvantaged farmers in a precarious position, leading them to limit production to established local 

supply conditions, offering lower margins but minimizing potential losses. On the processor side, the 

limited supply and capacity, despite national initiatives for economic diversification, hinder the 

realization of cassava's potential as an industrial raw material in the African context. This presents a 

significant obstacle to leveraging cassava's growing export potential and achieving economic 

diversification goals. In navigating these challenges, there is a critical need for innovative approaches 

and technologies that empower smallholder farmers, improve quality assessment, and enhance the 

entire cassava value chain to unlock its full economic potential in the global market. 

The starch content measuring device developed at UCL offers a cost-effective, swift, and user-friendly 

solution to the challenge of evaluating cassava samples. This device utilises a non-destructive approach 

to characterise the samples, and operates by generating a low-power radio-frequency signal, which is 

injected into the cassava sample using a probe. The device then measures the signal that is reflected 

back from the sample. The characteristics of this reflected signal are used to estimate the starch content. 

This estimation is based on a pre-established relationship between radio-frequency reflection and starch 

content, allowing for a reliable and efficient determination of the starch content in cassava samples that 

is accessible to farmers. 

2.3. Sensors for Livestock and Aquaculture Monitoring  
The future of animal farming will be guided by the principles of precision, sustainability, and intelligence. 

Accurate livestock production can only be attained with the rapid spread of intelligent technology for 

early warning of illnesses, feeding precision and remote diagnosis [15]. Collecting large amounts of data 

is made possible by the use of sensors and technology, and these data must be analysed with 

sophisticated statistical methods before any conclusions can be drawn about the animals’ behaviour, 

health, or welfare. Innovations and information technologies (ITs) are essential for achieving sustainable 

operations because they enable early and rapid disease detection [16].  

2.3.1. Precision Livestock Farming  
Precision Livestock Farming (PLF) is generally defined as a management system that offers continuous, 

automatic monitoring and control of animal behaviour, health, welfare, production and reproduction, as 

well as environmental impact of the production, in real time [17]. The great potential of PLF is focused 

on early alerts, which offer the farmer the power to act as soon as the first signs of impaired welfare or 

health emerge. Accurate prediction models have been developed in the context of PLF that send warning 

messages to farmers based on information from animal and environmental inputs and can help detect 

any deviation from the usual pattern. Thanks to the detailed information reported with regard to the 

status of their livestock, farmers may easily take corrective management measures. In this context, the 

benefits to farmers include improved decision-making, increased attractiveness for young farmers, and 
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a beneficial effect on resolving the end user’s analytical shortcomings through the conversion of raw 

data to useful information that is currently only obtainable through expert analysis and interpretation.  

 
Figure 3: Overview of a PLF system of various components on a dairy farm [18] 

2.3.1.1 Sensor Technologies  
IoT-enabled livestock management is a technology that uses sensors to gather data about livestock 

health, environment, and behaviour. Sensors largely represent the “hardware” component of PLF and 

often closely interact with the animal [19].  

Wearable Sensors: As the name suggests, these devices are attached directly to the animals, often in 

the form of collars, ear tags, or implants. They are designed to monitor various physiological parameters 

such as body temperature, heart rate, and movement [20]. For example, accelerometers can capture 

detailed movement data, providing insights into the animals’ activity levels, feeding behaviour, or signs 

of restlessness. Similarly, rumination sensors can track an animal’s chewing activity, offering valuable 

information about its digestive health and welfare. 

Environmental Sensors: These sensors are used to monitor environmental conditions that can 

significantly impact animal welfare. This includes ambient temperature, humidity, air quality, light 

intensity, and noise levels. By providing real-time feedback on the environment, these sensors can help 

maintain optimal living conditions for the animals and identify any adverse changes promptly. 

The application of sensor technologies in livestock management has opened new avenues for the in-

depth monitoring of animals in ways that were previously impossible. However, there are challenges 

such as the durability of wearable devices, potential discomfort or injury to the animal, ensuring the 

devices stay on the animals, and the cost and complexity of installing and maintaining environment-

based sensors [21]. 
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2.3.1.2 Surveillance Technologies 
Advanced surveillance technologies such as CCTV cameras, thermal cameras, and 3D imaging systems 

can capture a wealth of information about animal behaviour and physical condition. Combined with 

computer vision and machine learning algorithms, these systems can analyse animal movements, social 

interactions, body condition, and even detect physical abnormalities. 

Moreover, LiDAR (Light Detection and Ranging) technology is increasingly being integrated into PLF to 

enhance animal monitoring and management. LiDAR works by emitting laser beams and measuring the 

time it takes for the reflected light to return, creating a detailed 3D map of the environment. In PLF, this 

can be used for various applications, such as tracking animal movement, monitoring health, and 

optimizing feeding strategies. LiDAR technology used to be too expensive for PLF, however, in recent 

years, the cost of LiDAR technology has decreased significantly, making it more accessible for agricultural 

applications. However, while low-cost LiDAR systems are becoming more available, they may have 

significant limitations in terms of accuracy, range, and data resolution compared to higher-end models. 

Farmers need to balance cost with the specific needs of their PLF applications. Moreover, LiDAR systems 

can be affected by Environmental Conditions, such as dust, dirt, and moisture, common in livestock 

environments. It's important to choose systems that are robust and designed for harsh conditions. Last 

but not least, even low-cost/low accuracy LiDAR still have a cost that can be underestimated, which 

reflects only the basic hardware without additional integration that may be needed. The total cost may 

significantly increase if multiple units or advanced data processing capabilities are needed. 

2.3.1.3 UAV/Drones equipped with surveillance cameras  
Fixed cameras providing still images or videos can be used for small-scale animal inspections. Cameras 

mounted on remotely controlled drones may be used for large-scale surveillance. The outdoor aspect of 

livestock farming can be eased and modernized mainly with UAVs as the farmer can readily get the birds-

eye view of the whole herd, which is impossible to have with conventional methods. UAVs are used in 

various aspects of livestock monitoring such as detection, counting the numbers, identifying the types, 

tracking while grazing, health issues monitoring, behaviour monitoring, estimating the herd distribution, 

monitoring animal's behaviour, etc. [22]. 

2.3.2. Precision Aquaculture Farming  
Precision aquaculture can be defined as a recent initiative that uses different types of advanced 

strategies and technologies to reduce the environmental impact and to enhance the process efficiency 

and quality [23]. The connection between digital and physical devices, such as image capture devices, 

sensors, communication protocols, embedded systems, to record, monitor, and control the main 

variables related to the aquaculture plant operating in real time characterizes precision aquaculture.  

2.3.2.1 Sensor Technologies  
In aquaculture, multiparameter sensors with remote monitoring are extensively used to gather 

information on temperature, pH and dissolved oxygen. Additional types of sensors utilised in 

aquaculture include current and water flow sensors, which can measure the water levels and currents in 

real time [24]. Researchers are also using movement and imaging sensors to monitor fish behaviour. 
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Cameras and imaging sensors observe fish growth, health and behaviour. These sensors can provide real-

time photos and videos of fish behaviour, allowing farmers to identify potential issues and take 

corrective action. They can also monitor fish feeding and ensure sufficient nutrition for proper growth 

and development. 

Sensors can monitor important water quality parameters like pH, dissolved oxygen, temperature, nitrite 

and ammonia levels. Machine learning models can analyse the sensor data to detect abnormal 

conditions and predict future changes. This allows farmers to proactively adjust aeration, feeding and 

water treatment to maintain optimal conditions for fish growth.  

2.3.2.2 Camera Technologies 
Camera systems can be used to monitor the behaviour of fish in aquaculture farms during production. 

The computational analysis of images is a useful and promising strategy for extracting information from 

fish farms due to its non-invasive, automatic and remote monitoring of the environment. Equipment 

such as surface and acoustic cameras, underwater stereo video systems, sonar systems and others are 

installed in ponds, tanks and transport systems to observe the fishes.  

2.3.2.3 UAV/Drones equipped with surveillance cameras  
With the advent of UAVs in aquaculture, new tools such as high-resolution cameras on underwater 

drones or ROVs can capture images of fish to study their behaviour, growth and health indices [25]. 

These technologies integrate artificial intelligence (AI) and machine learning (ML) to detect diseases and 

parasites. Image processing technologies interpret external symptoms, enabling real-time pathogen 

detection and saving time. Equipped with sensors, 

UAVs can monitor environmental conditions, feed, equipment function, fish abnormality and suspicious 

activity. Drones can be fitted with RGB, multispectral and hyperspectral imaging sensors. Thermal and 

infrared cameras may also be utilised for specific objectives. UAVs can be deployed to capture images 

from different ponds in a farm to understand the feeding rate. 

2.3.3. Livestock & Aquaculture Monitoring Market Overview 
The Livestock Monitoring Market size is expected to grow from USD 6.08 billion in 2023 to USD 11.01 

billion by 2028 [26]. The market is characterized by dynamic innovation, with tech integration 

transforming traditional farming practices. It focuses on optimizing livestock care, disease prevention, 

and resource allocation to enhance productivity and animal welfare. The increasing focus on early 

disease detection and real-time monitoring in livestock is expected to significantly drive the growth of 

the livestock monitoring market. Technological advancement such as herd management system is a key 

trend gaining popularity in the livestock monitoring market. Current trends include AI-driven predictive 

analytics, remote monitoring due to the pandemic, sustainability-oriented practices, and block chain 

adoption for transparency across the supply chain. These trends are reshaping the market landscape, 

fostering efficient, data-driven livestock management practices. In terms of components, the hardware 

segment will have the largest market in the upcoming years. 
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Figure 4:Global livestock monitoring market 2023-2032 (www.custommarketinsights.com) 

Some of the key players in the global livestock monitoring market are DeLaval Inc.13, Fancom BV14, GEA 
Group Aktiengesellschaft15, MSD Animal Health16, Afimilk Ltd.17, BouMatic18, and Sensaphone19. The 
global precision aquaculture market size reached USD 481.5 billion in 2022 and is projected to hit around 
USD 899.57 billion by 2032 [27]. 

The global smart aquaculture market is primarily driven by the growing global demand for seafood 
coupled with the need for sustainable and efficient aquaculture practices. Advanced technologies such 
as Internet of Things (IoT), sensors, automation, and data analytics are increasingly being integrated into 
aquaculture operations to monitor and optimize parameters such as water quality, feeding, and fish 
health. These technologies enable farmers to enhance production efficiency, minimize environmental 
impact, and mitigate risks associated with disease outbreaks. Some of the key players in the global 
aquaculture monitoring market are AKVA Group20, Aquaculture Systems Technologies (AST)21, Deep 
Trekker Inc.22, In-Situ Inc. 23,Innova Sea Systems Inc.24 

2.4. Remote Sensing Solutions  
This subsection provides an overview of the data collected through remote sensing, specifically from 
satellites and drones. 

2.4.1. Satellite Data  
Enabled from the proliferation of the active satellite systems, Earth Observation (EO) services that are 

defined as the use of remote sensing technologies to monitor land, marine (seas, rivers, lakes) and 

 
 
13 DeLaval Inc.: https://www.delaval.com/en-us/  
14 Fancom BV: https://www.fancom.com/  
15 GEA Group: https://www.gea.com/en/index.jsp  
16 MSD Animal Health: https://www.msd-animal-health.com/  
17 Afimilk Ltd: https://www.afimilk.com/  
18 BouMatic: https://boumatic.com/eu_en/  
19 Sensaphone: https://www.sensaphone.com/  
20 AKVA Group: https://www.akvagroup.com/ 
21 Aquaculture Systems Technologies: https://astfilters.com/  
22 Deep Trekker Inc.: https://www.deeptrekker.com/ 
23 In-situ: https://in-situ.com/en/  
24 InnovaSea Systems: https://www.innovasea.com/  

https://www.databridgemarketresearch.com/reports/global-sensors-market
https://www.delaval.com/en-us/
https://www.fancom.com/
https://www.gea.com/en/index.jsp
https://www.msd-animal-health.com/
https://www.afimilk.com/
https://boumatic.com/eu_en/
https://www.sensaphone.com/
https://www.akvagroup.com/
https://astfilters.com/
https://www.deeptrekker.com/
https://in-situ.com/en/
https://www.innovasea.com/
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atmosphere25, are becoming accessible for integration with platforms that are targeting a multitude of 

scopes. Through the images obtained from the satellite-based instruments and evaluated and refined 

regarding several categories of information, a great number of systems and activities can be promoted. 

Specifically, EO presents an efficient method for surveying Earth’s physical, chemical, and biological state 

while contributing towards an environmental friendly progression of human civilization with the help of 

monitoring and analysing earths’ natural and artificial events and alterations [28]. The knowledge that is 

provided by EO satellites is extensively utilised in many research domains, especially with regard to the 

environment. Furthermore, other examples among the fields that EO services are currently utilised are 

agriculture [29], ecological applications [30], geology [31], and forestry [32], in addition to the areas of 

monitoring of natural disasters [33], land use and land cover [34], biodiversity [35] and water resources 

[36]. 

Moreover, the advancements in satellite EO data accessibility, in conjunction with the ongoing 

developments in methods and cloud computing services, are bringing about new opportunities by 

accommodating suitable, precise and trustworthy information for agriculture monitoring platforms 

while procuring crop-related information from specific regions to nationwide levels [37]. Additionally, 

EO-data contribute crucial information, regarding current crop conditions that can lead to dependable 

yield estimations essential for stable market operation, alleviation of possible food supply crisis, and 

timely activation of humanitarian assistance supporting campaigns. 

Regarding EO services that are available, since the capture of the first aerial photograph from Gaspard-
Félix Tournachon in 1858 [38], that can be classified as EO image, many significant EO satellite and 
sensors have been launched, for example Moderate-resolution Imaging Spectroradiometer (MODIS)26, 
Landsat27, Sentinels28, WorlView29 and Advanced Very High-Resolution Radiometer (AVHRR)30. 

2.4.2. Drone data  
Remote sensing using drones or Unmanned Aerial Vehicles (UAV) has become increasingly popular as a 

revolutionary technology in various fields [39], [40]. This method involves the use of drones equipped 

with sensors to gather data about the surface of the Earth. Drones can combine high-resolution imaging 

and flexibility since they can fly at lower altitudes compared to satellites. Allowing them to capture more 

detailed and precise data. Moreover, many different sensors can be mounted on drones, from standard 

RGB cameras to multispectral sensors, thermal cameras, and LiDAR systems. Therefore, drones with the 

appropriate sensors can be exploited at various applications, including environmental monitoring [41], 

precision agriculture [42], crop monitoring [43] and soil health assessment [44]. Drones play a crucial 

role in urban monitoring and planning [45], offering invaluable insights into city development and 

 
 
25 EU Agency for the Space Programme (EUSPA): https://www.euspa.europa.eu/european-space/eu-space-programme/what-
earth-observation  
26 MODIS: https://modis.gsfc.nasa.gov/about/  
27 Landsat: https://landsat.gsfc.nasa.gov/  
28 Sentinels: https://www.esa.int/Enabling_Support/Operations/Sentinels  
29 WorldView: https://www.earthdata.nasa.gov/worldview  
30 AVHRR: https://www.eumetsat.int/avhrr  

https://www.euspa.europa.eu/european-space/eu-space-programme/what-earth-observation
https://www.euspa.europa.eu/european-space/eu-space-programme/what-earth-observation
https://modis.gsfc.nasa.gov/about/
https://landsat.gsfc.nasa.gov/
https://www.esa.int/Enabling_Support/Operations/Sentinels
https://www.earthdata.nasa.gov/worldview
https://www.eumetsat.int/avhrr
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maintenance.  Another notable benefit of using drones in remote sensing is their ability to provide real-

time data, which is crucial for monitoring dynamic environments. Finally, drones can be characterized as 

a more economical option compared to traditional aircraft or satellites.   

Especially in precision agriculture and crop monitoring, drones and UAVs have been widely used in recent 

years [46] even though vegetation monitoring has traditionally been performed through remote sensing 

via satellites. This technology enables precise monitoring of crops, leading to more efficient farming 

practices and optimized crop yields. It can be used in a wide range of applications. Firstly, by analysing 

vegetation indices, such as Normalized Difference Vegetation Index (NDVI), farmers can gain insights 

about the health of crops, which is particularly vital for early-stage detection of diseases, nutrient 

deficiencies, or water stress [47]. Additionally, by analysing crop growth patterns, systems that exploits 

remote sensing images from drones can provide accurate yield predictions [48]. Drones play a significant 

role in pest and disease detection [49], as they can spot early signs of pest infestation or diseases, 

allowing for timely and targeted interventions.  

Drones in precision agriculture can be characterized as a low-cost aerial camera platform, equipped with 

GPS and sensors for collection relevant data. Specifically, RGB cameras can provide information about 

plant growth, coverage, etc., while multispectral sensors expand the utilities of drones by allowing 

farmers to see things that are not visible in visible spectrum, such as plant health, stress levels and 

moisture content in soil.  

RGB cameras, when mounted on drones, capture light in visible spectrum, like regular digital cameras, 

providing detailed photographs. These images can reveal various aspects of crop health and field 

conditions. As the drone flies over the field, the RGB camera continuously takes photos, which can be 

used from farmers to have an overview of their fields. RGB cameras have considerably higher resolution 

than the multispectral sensors, which make them suitable to be used for monitoring plants with big 

leaves, such as corns and maize [50]. However, multispectral imaging can provide more details on the 

biochemical state of the crops since they can capture light across various wavelengths, including both 

the visible spectrum and invisible bands such as near-infrared.  

Multispectral sensors can gather data by recording how different wavelengths of light are reflected by 

the crops. This reflection varies based on the health and condition of the plants. The captured images 

are then processed using specialized software to create vegetation indices, such as the NDVI and NDRE, 

which helps in providing information about plant health. This technology allows for precise, efficient 

monitoring of large agricultural areas, allowing farmers to gain insights into potential diseases and pest 

infestation [51].  

The global agriculture drone market  [52] [53] is presenting a significant growth, which is primarily driven 

by the adaptation of precision agriculture, technological advancements, automation and efficiency, cost 

reduction as well as supportive government regulations. This robust growth trend is expected to 

continue in the coming years. Specifically, the technological advancements are playing a crucial role in 

enhancing the effectiveness of drones in agriculture. Improved battery life, advanced sensors, and 

enhanced data processing capabilities are key innovations that contribute to the increased utility of 
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drones in various agricultural applications. Another important factor is the integration of AI and machine 

learning in various tasks ranging from data analysis to the development of robust decision-making 

system, leading to more accurate and insightful practices and approaches in precision farming. In market 

trends and opportunities, the “Drone-as-a-Service” stands out, offering drone-based services to farmers. 

This approach can eliminate the need for farmers to own and operate drones. This service further 

enhances the smart farming and precision agriculture, where drones can automatically perform tasks 

like data collection, aerial spraying. Regarding the competitive key players of agriculture drones, those 

are the DJI31, Parrot Drones32, PrecisionHawk33, Trimble Inc.34, AeroVironment Inc.35 and AgEagle Aerial 

Systems Inc.36 These companies are engaged in continuous product innovation developments to meet 

the evolving needs of the agriculture sector. 

 
 
31 DJI: https://www.dji.com  
32 Parrot Drones: https://www.parrot.com/en/drones  
33 PrecisionHawk: https://www.precisionhawk.com/  
34 Trimble Inc.: https://www.trimble.com/en  
35 AeroVironment Inc.: https://www.avinc.com/  
36 AgEagle Aerial Systems Inc.: https://ageagle.com/  
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https://www.trimble.com/en
https://www.avinc.com/
https://ageagle.com/
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3. Data Preconditions from NESTLER Pilots  
At this section, the needs of NESTLER pilots regarding the data are collected. The objective is to collect a 

set of requirements and information from the various pilots that can be utilized to ensure that the 

various data sources and services provided by the platform align optimally with these requirements. 

Table 2: NESTLER pilots and use cases 

Pilot Country Use Case Crop/Animal Type 

Crop-based farming Cameroon 

Experimentation with dung-based 
fertilizers and IoT devices for soil 
nutrient analysis 

Tomato 

Smart irrigation and disease control 

Biodiversity conversation 
policies and practices 

Uganda 

Mapping the coffee production system 

Coffee Environment/Climate change 
monitoring 

Crop and Livestock farming Ethiopia 
Poultry 

Layers & broiler 
chicken 

Fish Nile Tilapia  

Livestock and Marine 
farming 

Rwanda 
Poultry 

Layer, broiler & 
dual-purpose 
chickens 

Fish Nile Tilapia 

Edible insect farming Kenya - Black Soldier Fly 

Crop quality modeling and 
monitoring solutions and 
impact on food security 

Nigeria - Cassava 

 

3.1. Crop-based farming – Cameroon  
This pilot is led by AGRI and will be conducted in Cameroon. The main objective of this pilot is to evaluate 

the quality of crop-based agriculture using Frass fertilizers, IoT devices to analyze environmental 

parameters, smart agricultural irrigation and pest control measures. To achieve these objectives, the 

choice of crops is essential, and vegetables are the most appropriate considering local weather 

conditions Tomatoes are chosen as the most appropriate crops since it is one of the most important 

seasonal crops grown in Cameroon to supply the entire Central African sub-region. Unfortunately, it is 

very prone to disease, requires a lot of chemical fertilizers and special monitoring. As it is sensitive to 

drought, it is grown mostly during the rainy season. In this chapter, an analysis of the data needs from 

the two use cases under the crop-based farming pilot is provided, including preconditions of each use 

case as well as a use case data analysis.  

3.1.1. Preconditions per Use Case 
The use case had the following preconditions 
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1. Experimentation with dung-based fertilizers and IoT devices for soil nutrient analysis 
At this use case the total area of 500 m2 will be split to assess the effects of different fertilization 
strategies on plant growth. Specifically, seven different treatments will be performed. The preconditions 
identified as relevant for this use case are listed below: 

a. Demonstrate the influence of frass fertilizers on tomato productivity by acquired different 
environmental parameters. 

b. Environmental parameters regarding the weather conditions will be monitored by IoT 
sensors and instruments. 

c. Soil moisture should be constantly measured by appropriate sensor.  
d. Solar radiation data should be obtained.  
e. The sensors will continuously monitor and record environmental data.  
f. Satellite imagery may be used to provide indicators about the health of tomato crops.  
g. Crop disease identification and crop health estimation could be based on images of the 

crop and the leaves captured from visual and multi-spectral cameras located on drones 
flying over the field as well as from RGB images from mobile phone.  

 
2. Smart irrigation and disease control 

This use case focuses on the impact of smart irrigation and disease control on tomato productivity. The 

experiments will be conducted in 4 different blocks, which will be differentiated by the quantity and the 

way of water supply. The preconditions identified as relevant for this use case are listed below: 

a. IoT sensors equipped with various sensors and smart devices will measure various key 
environmental parameters relevant to tomato growing.  

b. Soil moisture should be constantly measured by appropriate sensor.  
c. Smart irrigation system will be installed on the plots and linked to a mobile application.  
d. The automatic irrigation will take place when the soil moisture is below a specific value 

and will stop as soon as soil moisture has reached a specific value for optimal plant 
growth.  

e. Crop disease identification and crop health estimation could be based on images of the 
crop and the leaves captured from visual and multi-spectral cameras located on drones 
flying over the field as well as from RGB images from mobile phone.  

3.1.2. Use case Data Analysis 
The following table describe, from a general point of view, the features of the potential data that is 
relevant for the specific pilot.   

Table 3: Data analysis for “Crop-based farming” pilot. 

Data Acquisition mean Data type 
Data 

availability 

Environmental 
Parameters 

SynField with appropriate sensors JSON streaming 

Satellite imagery Sentinel/Modis GeoTIFF, HDF, NetCDF On request 

Images 
Drone (Multi-spectral or RGB 

cameras) 
.tif, .jpeg On request 

Mobile phone (RGB camera) .jpeg, .png On request 

 



HORIZON Research and Innovation Actions - 101060762: NESTLER 

Deliverable D3.1: Remote Sensing technologies and multi-modal data aggregation protocols 

Page 37 of 119 

3.2. Biodiversity conversation policies and practices – Uganda  
The biodiversity conservation pilot, led by CTPH, will take place in Uganda. CTPH aims to improve the 

health of wildlife, ecosystems and humans as well as their livestock in and around Africa’s protected 

area. The pilot will take place at areas, where coffee is being grown by communities as an alternative 

livelihood to help mitigate the Human wildlife conflict arising from crop raids by the Gorillas and other 

wildlife. There will be analysis of suitable areas for coffee production alongside the spatial distribution 

of actual and potential zones for coffee, their productivity levels and predicted potential yields using 

accurate technological interventions. In this chapter, an analysis of the data needs from the two use 

cases under biodiversity conservation policies and practices pilot is provided. 

3.2.1. Preconditions per Use Case 
The use case had the following preconditions: 
1. Mapping the coffee production system 
At this use case, the suitable areas for coffee production will be analysed. Moreover, the actual and 

potential zones for coffee will be assessed, along with their productivity and potential yields. The 

preconditions identified as relevant for this use case are listed below: 

a. Mapping coffee farms by obtaining GPS coordinates to define the actual size of those areas. 
b. Unmanned Aerial Vehicles (UAVs) could be exploited to provide indicators regarding the 

seasonal crop performance. 
c. GIS could be used to visualize the coffee farm areas.  

 
2. Environment/Climate change monitoring 
This use case has as goal to effectively monitor the environmental parameters as they are crucial for 

coffee cultivation. Current and historical climate data will be used in data-driven models to predict future 

trends and events in coffee production. The preconditions identified as relevant for this use case are 

listed below: 

a. The environmental monitoring will be performed by combining data from IoT sensors and 
remote sensing.  

b. Environmental parameters regarding weather conditions will be monitored by IoT sensors and 
instruments. 

c. The sensors will continuously monitor and record environmental data.  
d. Remote sensing techniques could be used to monitor health of coffee crop.  
e. Satellite imagery data will be acquired to assess changes in the landscape as well as 

climatologic variables.  
 

3.2.2. Use case Data Analysis 
The following table describes, from a general point of view, the features of the potential data that is 

relevant for the specific pilot.   
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Table 4: Data analysis for “Biodiversity conversation policies and practices” pilot. 

Data Acquisition mean Data type 
Data 

availability 

Environmental 
Parameters 

SynField Weather Station JSON streaming 

GPS coordinates GPS device N/A On request 

Satellite imagery Sentinel/Modis 
GeoTIFF, HDF, 

NetCDF 
On request 

Images 
Drone (Multi-spectral or RGB 

cameras) 
.tif, .jpeg On request 

Mobile phone (RGB camera) .jpeg, .png On request 

 

3.3. Crop and Livestock farming – Ethiopia 
The focus on food security is strongly depends on the livestock production systems. The limited supplies 

and high cost of good quality feed are major constraints. Specifically, in many Low- and Middle-Income 

Countries (LMIC), various challenges hinder the supply and adoption of improved feed technologies. This 

pilot is led by EIAR in collaboration with MANA and ICIPE, will be conducted in Ethiopia, exploring the 

use of insect protein as an alternative feed source to address the various challenges. In this chapter, an 

analysis of the data needs from the two use cases under the crop and livestock farming pilot is provided. 

3.3.1. Preconditions per Use Case 
The use case had the following preconditions: 
1. Poultry pilot preparation 

This use case aims to assess various aspects of Black Soldier Fly (BSF) larvae-based feed recipes for 

poultry. Additionally, the study explores the feed's potential as a scavenging supplement and conducts 

a partial budgeting analysis in poultry production. For this use case, 4 different experiments will be 

conducted in poultry on-station and on-farm of the same location. The preconditions identified as 

relevant for this use case are listed below: 

a. Monitoring the environmental conditions of poultry station/farms.  
b. Environmental parameters regarding the quality of area will be monitored by IoT sensors 

and instruments. 
c. The sensors will continuously monitor and record environmental data.  
d. Poultry health will be monitored by AI-based system that utilizes video and audio.  
e. Video should be captured by fixed point in poultry farm/station. 
f. Audio should be recorded by microphones in poultry farm/station. 

 
2. Fish pilot preparation 

This use case has as goal to adapt Black Soldier Fly Larvae (BSFL) production techniques at the pilot site, 

evaluate the growth performance of Nile tilapia when fed with insect protein from BSFL, and 

demonstrate the significance of BSFL-based fish feed in enhancing aquaculture farming. For this use case, 

various experimental setups will be organized at 10 plastic tanks with different treatments in each one 

at the same location. The preconditions identified as relevant for this use case are listed below: 
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a. Monitoring the environmental conditions of fish tanks.  
b. Environmental parameters regarding the quality of fish tanks will be monitored by IoT 

sensors and instruments. 
c. The sensors will continuously monitor and record environmental data.  
d. Fish health will be monitored by AI-based system that utilizes video.  
e. Video should be captured by fixed point in fish tanks. 

3.3.2. Use case Data Analysis 
The following table describes, from a general point of view, the features of the potential data that is 

relevant for the specific pilot.   

Table 5: Data analysis for “Crop and livestock farming” pilot. 

Data Acquisition mean Data type Data availability 

Environmental Parameters 
SynAir 

JSON streaming 
SynField 

Video Video camera .mp4, .avi On request 

Audio Microphone .mp3, .wav On request 

3.4. Livestock and marine farming – Rwanda  
This pilot is led by RAB in collaboration with MANA and ICIPE and it will be conducted in Rwanda. The 

purpose of the pilot is the development of alternative forms of food sources for the cultivation of 

livestock and fisheries. In this chapter, an analysis of the data needs from the two use cases under the 

livestock and marine farming pilot is provided. 

3.4.1. Preconditions per Use Case 
The use case had the following preconditions: 

1. Poultry pilot preparation  
This use case focuses on BSF farming to assess the effectiveness of Black Soldier Fly larvae meal as a 

substitute for traditional protein sources in poultry diets. It aims to evaluate the impact on chicken 

performance, health, and overall productivity, and to explore the economic feasibility of using BSFL-

based feed. The preconditions identified as relevant for this use case are listed below: 

a. Monitoring the environmental conditions of poultry stations/farms.  
b. Environmental parameters regarding the quality of area will be monitored by IoT sensors 

and instruments. 
c. The sensors will continuously monitor and record environmental data.  
d. Poultry health will be monitored by AI-based system that utilizes video and audio.  
e. Video should be captured by fixed point in poultry farm/station. 
f. Audio should be recorded by microphones in poultry farm/station. 

 
2. Fish pilot preparation 

This use case involves BSF farming to evaluate the effectiveness of Black Soldier Fly larvae meal as a 

replacement for soybean or fish meal in aquaculture feed, particularly focusing on the growth, health, 

and survival of Nile Tilapia. The preconditions identified as relevant for this use case are listed below: 
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a. Monitoring the environmental conditions of fish tanks.  
b. Environmental parameters regarding the quality of fish tanks will be monitored by IoT 

sensors and instruments. 
c. The sensors will continuously monitor and record environmental data.  
d. Fish health will be monitored by AI-based system that utilizes video.  
e. Video should be captured by fixed point in fish tanks. 

3.4.2. Use case Data Analysis 
The following table describes, from a general point of view, the features of the potential data that is 

relevant for the specific pilot.   

Table 6: Data analysis for “Livestock and marine farming” pilot. 

Data Acquisition mean Data type Data availability 

Environmental Parameters 
SynAir 

JSON streaming 
SynField 

Video Video camera .mp4, .avi On request 

Audio Microphone mp3, .wav On request 

 

3.5. Edible insect farming – Kenya  
This pilot is led by ICIPE in collaboration with MANA and will be conducted in Kenya. This pilot focuses 

on developing and optimizing the lifecycle of insect production, particularly Black Soldier Fly Larvae, for 

sustainable agriculture. Additionally, it also aims to investigate the production of Frass fertilizer, made 

from insect waste, to enhance crop growth. Specifically, various activities will monitor the safety and 

quality of the produced larvae and insect frass fertilizer and explore the effectiveness of this fertilizer in 

enhancing crop productivity. In this chapter, an analysis of the data needs from the edible insect farming 

pilot is provided.  

3.5.1. Preconditions per Use Case 
The preconditions identified as relevant for this use case are listed below: 

a. Environmental parameters regarding the weather conditions will be monitored by IoT sensors 
and instruments. 

b. The sensors will continuously monitor and record environmental data.  
 

3.5.2. Use case Data Analysis 
The following table describes, from a general point of view, the features of the potential data that is 

relevant for the specific pilot.   

 
Table 7: Data analysis for “Edible insect farming” pilot. 

Data Acquisition mean Data type Data availability 

Environmental Parameters SynField Weather Station JSON streaming 
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3.6. Crop quality monitoring solutions and impact on food security – Nigeria  
The aim of this pilot is to collect comprehensive data to develop a robust yield prediction model 

specifically for cassava. The potential benefits of the pilot include improved yield prediction, enhanced 

farm management, tailored support and recommendations, resource efficiency, knowledge sharing, and 

food security and economic benefits. Various sensing stations will capture crucial environmental data, 

including rainfall patterns, temperature, humidity and solar radiation. Data indicating the crop quality 

conditions of crops will also be gathered. In addition to environmental data, the pilot will also focus on 

gathering farm-level data from the research farms. The collected environmental and farm-level data will 

then be utilized to develop a yield prediction model for cassava. In this chapter, an analysis of the data 

needs from the crop quality monitoring solutions and impact on food security pilot is provided. 

This pilot is led by IITA and will be conducted in Nigeria.  

3.6.1. Preconditions per Use Case 
The preconditions identified as relevant for this use case are listed below: 

a. IoT station will consist of a SynField module equipped with various sensors and instruments to 
measure key environmental parameters.  

b. Environmental parameters regarding the weather conditions will be monitored by IoT sensors 
and instruments. 

c. Solar radiation data should be obtained.  
d. The sensors will continuously monitor and record environmental data.  
e. Cheap, accurate and rapid determination of starch content by farmers and processors of cassava 

3.6.2. Use case Data Analysis 
The following table describe, from a general point of view, the features of the potential data that is 

relevant for the specific pilot.   

Table 8: Data analysis for “Crop quality monitoring solutions and impact on food security” pilot. 

Data Acquisition mean Data type Data availability 

Environmental Parameters SynField  JSON streaming 

Starch content Crop quality device N/A On request 

 



HORIZON Research and Innovation Actions - 101060762: NESTLER 

Deliverable D3.1: Remote Sensing technologies and multi-modal data aggregation protocols 

Page 42 of 119 

4. IoT Sensors for Environmental Monitoring 
This section offers a detailed description of the environmental parameters identified by the pilots as 
critical for collection, along with the IoT sensors of the SynField platform used by the NESTLER project to 
gather those parameters. 

4.1. NESTLER Environmental Factors 
The following subsections present the environmental factors that are monitored in each Pilot case by 
utilizing SynField product line equipment. This determination is based on the data preconditions listed 
in Section 3 and extensive discussions conducted during the project's initial phase. These discussions 
included group telecommunications and meetings, as well as peer-to-peer conversations. Accordingly, 
we have identified the specific environmental factors to be measured in each pilot, along with the 
appropriate SynField equipment required for these measurements. 
 

4.1.1. Crop-based farming – Cameroon  
Table 9: SynField for monitoring environmental parameters for "Crop-based farming" pilot. 

Equipment Quantity 
Equipment 
Code 

Environmental Factors 

Synfield X3 2 SF-HN-X3 - 

Weather 
Station 

2 SF-WS-02 
Rain, Wind-Direction, Wind-Speed, Ambient Relative 
Humidity, Ambient Temperature 

Pyranometer 2 SF-SR-01 Solar Radiation (440 - 1100nm spectrum) 

Soil Moisture 2 SF-SM-10HS Soil moisture (Volumetric Water Content) 

Electrovalve 4 - - 

 

4.1.2. Biodiversity conservation policies and practices – Uganda 
Table 10: SynField for monitoring environmental parameters for "Biodiversity conservation policies and practices" pilot. 

Equipment Quantity 
Equipment 
Code 

Environmental Factors 

Synfield X3 1 SF-HN-X3 - 

Weather 
Station 

1 SF-WS-02 Rain, Wind-Direction, Wind-Speed, Ambient Relative 
Humidity, Ambient Temperature 

 

4.1.3. Crop and Livestock farming – Ethiopia 
Table 11: SynField for monitoring environmental parameters for "Crop and Livestock farming" pilot. 

Equipment Quantity 
Equipment 
Code 

Environmental Factors 

Synfield X3 3 SF-HN-X3 - 

SynAir 2 SF-SA-01C NH3, Particulate Matter (PM1.0, PM2.5, PM4, PM10), CO2, 
Temperature, Relative humidity 
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SynWater 1 SF-SW-01 Water Temperature, pH, Oxidation-Reduction-Potential 
(ORP), Dissolved-Oxygen (DO), Electrical-Conductivity (EC) 

Pyranometer 1 SF-SR-01 Solar Radiation (440 - 1100nm spectrum) 

4.1.4. Livestock and marine farming – Rwanda 
Table 12: SynField for monitoring environmental parameters for "Livestock and marine farming" pilot. 

Equipment 
Quant
ity 

Equipment 
Code 

Environmental Factors 

Synfield X3 3 SF-HN-X3 N/A 

SynAir 2 SF-SA-01C NH3, Particulate Matter (PM1.0, PM2.5, PM4, PM10), CO2, 
Temperature, Relative humidity 

SynWater 1 SF-SW-01 Water Temperature, pH, Oxidation-Reduction-Potential 
(ORP), Dissolved-Oxygen (DO), Electrical-Conductivity (EC) 

 

4.1.5. Edible insect farming – Kenya 
Table 13: SynField for monitoring environmental parameters for "Edible Insect farming" pilot. 

Equipment Quantity 
Equipment 
Code 

Environmental Factors 

Synfield X3 1 SF-HN-X3 N/A 

Weather 
Station 

1 SF-WS-02 Rain, Wind-Direction, Wind-Speed, Ambient Relative 
Humidity, Ambient Temperature 

 

4.1.6. Crop quality monitoring solutions and impact on food security – Nigeria 
Table 14: SynField for monitoring environmental parameters for "crop quality monitoring solutions and impact on food 

security" pilot.  

Equipment Quantity 
Equipment 
Code 

Environmental Factors 

Synfield X3 2 SF-HN-X3 N/A 

Weather 
Station 

1 SF-WS-02 Rain, Wind-Direction, Wind-Speed, Ambient Relative 
Humidity, Ambient Temperature 

Pyranometer 1 SF-SR-01 Solar Radiation (440 - 1100nm spectrum) 

 

4.2. SynField Ecosystem 
SynField platform offers an innovative and flexible platform, capable for smart environmental 
monitoring as well smart irrigation and water management, with advanced control and monitoring of 
small and medium-sized crop, livestock and marine farms, as well as water supply networks. Specifically, 
it offers remote monitoring of climatic, environmental and soil/water conditions such as: 
• Air temperature, wind speed and direction, rainfall, humidity, leaf wetness, solar radiation, 

Particulate Matter, NH3, CO2 
• Soil conductivity/temperature/moisture 
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• Water temperature/pH/Oxidation Reduction Potential/Dissolved Oxygen/ EC 
Moreover, it provides for remote control of irrigation and water management systems. The control 

procedure can be based on rules that take into consideration time parameters and sensor values leading 

into a partially or fully automated operation. 

 

 
 

 

   
Figure 5: The SynField ecosystem 

 
The SynField ecosystem, which is presented in Figure 5, comprises of: 

1. the SynField nodes, which are sensor-logging autonomous systems while providing remote 
control and can be distinguished to Head Nodes (autonomous) and the Peripheral Nodes (require 
a Head Node to function properly). 

2. the SynField Cloud Server Platform that collects all SynField data and implements the decision 
making and automated control system. 

3. The SynField application for remote monitoring and actuator control. 
4. the SynControl application for configuring the SynField nodes in the field. 
5. the SynField Water Management application for remotely activating a water well/drilling. 
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SynField platform main features can be summarized as follows: 

• Support any combination of a wide range of analog and digital sensors (vendor independent).  

• Automatic/manual remote control of actuators (several types of solenoid valves, pumps 
start/stop or relay-switches are supported) 

• Internet connectivity via mobile network (WiFi connectivity (802.11b/g/n) available upon 
request) 

• Data acquisition, processing & rule based-engine provision 

• Energy autonomous nodes (based on solar panel & rechargeable battery). 

• Easy on-site setup/control via a mobile application and Bluetooth interface 

• User friendly access via web/mobile applications and personalized interface. 

• User defined Alarms & Notifications  

• Configurable data acquisition/logging frequency 

• Automatic SynField Nodes firmware update online (Over The Air) and via Bluetooth  

• Outdoor/weatherproof devices (IP65) 

• Electrostatic discharges (ESD) and lightning protection 
 

SynField ecosystem is able to communicate with third-party platforms via a REST API so that data 
acquired from SynField nodes may be utilized by other applications. Moreover, SynField platform is fully 
compatible with the OneM2M 37protocol while the Smart Irrigation Business Logic module has been 
ported over the General Electric Predix platformThe following subsections present the main SynField 
platform units that are going to be utilized for the environmental monitoring needs during NESTLER’s 
pilot activities.    

4.2.1. SynField Head Node 
The SynField Head node38 (Figure 6) is a fully autonomous device with integrated solar panel (on-top of 

the device) and large capacity batteries.  

SynField device directly supports a wide range of analogue and digital sensors (vendor independent) to 

monitor weather, environmental and soil conditions as well as coordinates water management 

applications. The SynField Node periodically collects sensor data and forward them to the SynField cloud 

server via a cellular or Wi-Fi connection. Moreover, they act as controllers that allow remote control of 

actuators (i.e., electrovalves and relays). Furthermore, the device can be installed and configured easily 

at the field. Currently there are three SynField Head Node options available (SynField X1, SynField X3 and 

SynField X5) able to cover efficiently, effectively and economically respective customer requirements. 

Since regarding NESTLER’s pilot activities the X3 is the only version of SynField head node that will be 

used, the information that is presented below will be focused accordingly.  

 
 
37 OneM2M: https://www.onem2m.org/  
38 SynField: https://www.synfield.gr/about/  

https://www.onem2m.org/
https://www.synfield.gr/about/
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Figure 6. SynField X3 Head Node 

 
SynField X3 features can be summarised to: 

• Ultra-rugged and durable construction 

• Eight sensor ports (any type of analog, pulse, Inter-Integrated Circuit (I2C)39, SDI-12  interface) 

• Eight latching actuator ports (any type of solenoid control valves, pumps, latching relays, etc.) 

• Supports a plethora of off-the-self sensors (vendor independent) and actuators (valves, relays). 

• Integrated quad-band cellular module, NarrowBand-Internet of Things (NB-IoT)40 compatible 

• Supports connection with Weather Station/SynAir/SynWater modules 

• Out-of-the-box integrated with the SynField Cloud application, for almost real-time data 
monitoring 

• Almost real-time control of valves, relays and automations using advanced, user-defined rules 

• Integrated GPS, barometric pressure, system temperature, battery voltage level and charge 
current sensors  

• Configurable via Bluetooth with the SynField Control application (Android OS) 

• Simple setup process via the Bluetooth interface 

• Firmware update using the control application 

• Built-in solar panel or external charger for all kinds of installations 

• Rechargeable high capacity (4000mAh) battery 

• On board non-volatile memory (8 Mbyte) 

• ESD/lightning protection 

• Optimized user interface for desktop and mobile devices 

• Dedicated application for mobile devices (Android OS) providing a simplified monitor and control 
interface. 

 
 
39 I2C: https://community.nxp.com/t5/MQX-Software-Solutions-Knowledge/Introduction-to-I2C-Interface/ta-p/1120762  
40 NB-IoT: https://www.gsma.com/iot/narrow-band-internet-of-things-nb-iot/  

https://community.nxp.com/t5/MQX-Software-Solutions-Knowledge/Introduction-to-I2C-Interface/ta-p/1120762
https://www.gsma.com/iot/narrow-band-internet-of-things-nb-iot/
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A great variety of state of the art, off-the-shelf (vendor independent) sensors and automations can be 

connected to the SynField nodes (Figure 7), so that the appropriate ones can be selected for the specific 

cultivation needs. In addition, the SynField system is able of remotely controlling actuator switches, 

including solenoid valves and start/stop water pumps. Thus, the user, apart from monitoring all the 

characteristics of the crop and the conditions prevailing in the field, can also initiate appropriate actions 

by remotely controlling the automations wherever he is. 

 
Figure 7. Indicative SynField supported sensors & actuators 

 
The SynField X3 node consists of a single printed circuit board (PCB) that is housed inside the enclosure. 

The following figure (Figure 8) shows the layout of the device’s PCB along with its connectors and 

switches. 

 
Figure 8 View of the SynField X3 board 
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Since more than 50 state of the art sensors and actuators41 are already integrated in the platform, the 

user can access real time data for monitoring the climatic, environmental, and soil conditions using his 

personal computer or mobile device, through the SynField software applications. Specifically, the 

following environmental factors can be observed remotely: 

• Ambient temperature and relative-humidity 

• Wind speed & wind direction 

• Rain gauge 

• Moisture (soil) 

• Electrical conductivity (soil) 

• Temperature (soil) 

• Leaf Wetness 

• Solar radiation  

• Liquid flow/pressure (irrigation) 

• Flow meters (irrigation) 

• Liquid level (tank) 

• Distance 
Aside from the parameters above, SynField platform, with the addition of SynWater and SynAir 

peripheral nodes that are described in the following paragraphs, offers the ability to monitor additional 

environmental characteristics. 

4.2.2. SynWater  
The SynWater peripheral node42 (Figure 9) is a versatile sensor device that can accommodate several 

water quality sensors. The SynWater device cannot operate by itself since it is specifically designed to 

operate while connected to a SynField head node (X3 and X5 versions). The SynField device will then 

read sensors values and forward the measurements to the SynField software platform to the cloud. Thus, 

the data are available, wherever you are, through your desktop or your mobile device, enabling the 

monitoring of water quality characteristics remotely. Additionally, through the SynField software 

applications, the user can access historical data measurements and/or configure criteria for alerts so that 

he will be automatically notified, via email and SMS, in the event that the defined conditions are met. 

The SynWater device can support up to 5 water quality sensors. Specifically, Synelixis’s professional 

water quality monitoring node can support measurements from any of the following sensors: 

• Water temperature  

• pH  

• Oxidation Reduction Potential (ORP)  

• Dissolved Oxygen (DO)  

• Electrical Conductivity (EC)  

 
 
41 SynField Supported Sensors: https://www.synfield.gr/features/  
42 SynWater: https://www.synfield.gr/synwater/  

https://www.synfield.gr/features/
https://www.synfield.gr/synwater/
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Figure 9 SynWater node 

 
Any combination of the above sensors can be utilised since the node recognizes automatically which 
sensors are connected. Moreover, when a temperature sensor is connected, the readings of the other 
sensors are temperature compensated. 
In addition to the above SynWater sensors, supplementary water related measurements (i.e. water 
pressure, water level, water flow) can also be obtained from appropriate sensors that can be connected 
to the respective SynField head node device that the SynWater node is connected to. 
It should be mentioned that due to the nature of most water quality sensors implementations and 
depending on the particular use case’s accuracy requirements, it could be recommended to implement 
a sensor’s calibration operation periodically (i.e., on a yearly basis). The SynField/SynWater ecosystem 
provides a user-friendly procedure for performing the required calibration procedure. 
Regarding the SynWater device implementation the following features are supported: 

• Ultra-rugged and durable construction 

• Low power dissipation. Can be used in solar/battery powered applications43 

• User-friendly calibration process 

• Since each sensor has its own distinct excitation power, the device is enabled to implement a 

policy that restricts the activation of only one sensor at a time. Consequently, the maximum 

power consumption of the whole device is equal to the power consumption of its most power-

intensive sensor. 

• As the on-board digital busses are decoupled from each another (Figure 10), a faulty sensor 

operation can be isolated, enabling the continuation of the overall operation of the device. 

 
 
43 In most cases a solar/battery powered device can operate with a 20 minutes sampling interval. In cases where more 
frequent sampling is required and/or a very power-hungry sensor is attached,  the device may require an external power 
supply (i.e. external battery or utility power). 
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Figure 10 View of the SynWater board 

 
With the addition of SynWater peripheral node(s), the SynField platform is upgraded to an ideal solution 
for use cases that require monitoring of water quality characteristics such as: 

• Aquaculture 
• Fish farming 
• Smart cities 
• Environmental & industrial applications 

The following table presents SynWater’s sensor specifications. 

Figure 11: SynWater sensor specifications 

Temperature Sensor Specifications 
Range -50 C̊ to 200 C̊ 
Accuracy +/- (0.3 + (0.005*t)) 
Life expectancy 15 years 
pH Sensor Specifications 
Range 0 – 14 
Accuracy +/- 0.002 
Life expectancy ~4 years+ 
Oxidation Reduction Potential (ORP) Sensor Specifications 
Range -1019.9mV − 1019.9mV 
Accuracy +/- 1mV 
Life expectancy ~4 years+ 
Dissolved Oxygen (DO) Sensor Specifications 
Range 0 − 100 mg/L 
Accuracy +/- 0.05 mg/L 
Life expectancy ~4 years 
Electrical Conductivity (EC) Sensor Specifications 
Range 5 − 200,000 μS/cm 
Accuracy +/- 2% 
Life expectancy ~10 years 
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4.2.3. SynAir 
The SynAir peripheral node44 (Figure 12) is an adjustable sensor platform that can be configured to 
integrate a multitude of digital sensors for the detection and/or measurement of air quality 
characteristics. Since SynAir is not designed to function as a standalone device, it should be connected 
to a SynField head node (all versions) that will access the sensor and transmit the measurements to the 
SynField cloud platform. Consequently, with the help of SynField software applications, the 
aforementioned parameters can be retrieved, enabling remote monitoring of the specific air quality 
characteristics. Moreover, the user can define criteria for alert notifications, via email or SMS, in case 
the specified conditions are met.  

 
Figure 12 SynAir peripheral node 

 
The SynAir device can incorporate up to 6 digital I2C air quality sensors. Specifically, for the 
implementation of environmental monitoring requirements regarding NESTLER’s Pilot activities, 
Synelixis’s professional air quality monitoring device integrates sensors for the following factors: 

• Particulate Matter (PM1.0, PM2.5, PM4, PM10) 

• Temperature  

• Relative Humidity  

• NH3 

• CO2 

Additionally to the above environmental factors, SynAir’s previous versions accommodate sensors 

capable for measuring barometric pressure, total volatile organic compounds (VOC), CO, CO2, Ozone, 

 
 
44 SynAir: https://www.synfield.gr/about-synair/  

https://www.synfield.gr/about-synair/
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NO2 and could detect ethanol. Furthermore, SynAir device implementation presents the following 

features: 

• Ultra-rugged and durable construction  

• Compliance with the European and U.S. Air Quality Index (AQI)  

• Low power dissipation. Can be used in solar/battery powered applications45  

• Enclosure fan and high flow vents for increased measurement accuracy 

• Since each sensor has its own distinct excitation power, the device is enabled to implement a 

policy that restricts the activation of only one sensor at a time. Consequently, the maximum 

power consumption of the whole device is equal to the power consumption of its most power-

intensive sensor. 

• On account of the fact that the on-board (Figure 13) digital busses are decoupled from each 

another, a faulty sensor operation can be isolated and thus enabling the continuation of the 

overall operation of the device. 

  
Figure 13 View of the SynAir board 

 
With the integration of SynAir peripheral node(s), the SynField platform is fully equipped regarding use 
cases that require environmental monitoring of air quality characteristics such as: 

• Smart cities 

• Precision agriculture and farming 

The following table presents SynAir’s sensor specifications for Nestler’s Pilot implementations. 
  

 
 
45 In most cases a solar/battery powered device can operate with a 20 minutes sampling interval. In cases where more 
frequent sampling is required and/or a very power-hungry sensor is attached, the device may require an external power 
supply (i.e. external battery or utility power). 
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Figure 14: SynAir sensor specifications 

Humidity Sensor Specifications 

Relative humidity measurement range 0 – 100% 

Accuracy ±3% 

Repeatability 0.1% 

Temperature Sensor Specifications 

Temperature measurement range -40 °C - 70 °C 

Accuracy ± (0.4 °C + 0.023 x (T [°C] - 25°C)) 

Repeatability 0.1 C 

CO2 Sensor Specifications 

Range 400 – 10.000 ppm 

Accuracy ± (30 ppm + 3%) (25 °C, 400 – 10.000 ppm) 

Repeatability 0.1 C 

Particulate Matter Sensor Specifications 

Mass concentration range 0 - 1000 μg/m3 

Mass concentration accuracy for PM1 and PM2.5 ±10 μg/m3 

Mass concentration accuracy for PM4 and PM10 ±25 μg/m3 

NH3 Sensor Specifications 

Range 0 – 100 ppm 

Resolution 1 ppm 

 

4.3. SynField Installation in Pilots  
Various SynField devices along with the appropriate sensors have already been shipped to all designated 

African countries. Moreover, the installations procedures have been started. In Nigeria, the installation 

phase has reached to a notable level since the SynField X3, the weather station and the Pyranometer 

have been successfully installed. These devices have started to collect environmental data, essential for 

the NESTLER objectives. The upcoming period, all the related African countries will install the suitable 

devices and sensors, starting collected environmental data. Figure 15 and Error! Reference source not 

found. shows the installation of SynField device in field.  

  

Figure 15: SynField Installation in Nigeria 
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5. Sensor for Crop Quality Measurement  
A handheld device able to determine import information about the crop quality of cassava is presented 
in this section. This device offers a rapid, affordable, and user-friendly means to determine the economic 
value of cassava for farmers and the bioenergy and bioplastic industries. 

5.1. Parameters & Metrics for Crop Quality 
The primary quality metric of interest is the starch content of cassava. The bulk of the dried cassava root 

consists of carbohydrates, over 80% of which is pure starch [54] [55]. In the starch sub-industry, where 

new applications such as the production of bioenergy and biodegradable plastic alternatives are driving 

increasing global demand, the availability of a rapid, non-destructive method for estimating the starch 

content of fresh roots and tubers in the field is highly desirable. Moreover, for these industrial processes, 

the starch content of cassava determines the actual economic value of the crop and dictates how much 

the farmers get paid. 

5.2. Device & Technique  
The cassava starch measuring device works by using radio frequency (RF) return loss measurements. It 

takes advantage of the natural properties of cassava root samples to estimate their starch content. In 

simple terms, when the cassava has more dry matter and starch, the device detects lower return loss at 

specific frequencies, around 30 MHz. This change in return loss indicates a higher starch content. So, by 

measuring the RF return loss, the device provides a practical way to assess and quantify the amount of 

starch in cassava roots. 

Based on the observed correlation between RF return loss and starch/dry matter content, a portable 

easy to use handheld device has been developed. This test instrument is designed for the simple and 

reliable estimation of starch content in cassava roots, particularly in field settings.  

The measurement process involves probing cassava samples at a specific frequency, typically 30 MHz. 

Custom-made probes are employed for this purpose. The return loss at this frequency is then measured 

and serves as an indicator of the starch content in the cassava roots.  

The prototype test instrument is engineered with key objectives in mind: portability, affordability, and 

user-friendliness. To convey starch content information, the instrument has a display screen to provide 

the measurement result as well as a basic visual display system consisting of an array of five LEDs. These 

LEDs categorize starch content into five levels, ranging from "low" to "high", making the measurement 

result even more accessible to users.  

5.2.1. Evolution in the Device Development  
The device has gone through three major development evolutions, with three prototype versions, each 
building on the previous one. 

Prototype Version 1 
• The first generation of instrument hardware: “minimum viable platform”. 
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• Intended to prove the concept of a battery operated portable instrument to measure starch 
content of cassava using the RF return loss method. 

• Processor: ATmega328 in the form of an Arduino nano, which allowed for rapid SW development. 
• Main signal generator is an AD9850 DDS module. 
• Display an array of 5 LEDs to indicate a range of return loss values calibrated to represent starch 

content in 5 bands, from low to high. 
• No data display or wireless capability. 

 
Figure 16: Cassava Quality Measurement Device - Version 1 

Prototype Version 2 
• Processor evolution to the Heltec processor module: 

o more powerful ESP32 processor 
o Bluetooth connectivity 
o built-in OLED display. 

• Temperature sensor added. 
• Main signal generator is again a AD9850 DDS module. 
• Power supply: Rechargeable Li-Po battery with power management circuitry and external 

charging via standard micro USB. 
• Removable SD card for data storage and 5 data entry keys (later removed in version 3). 
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Figure 17: Cassava Quality Measurment Device - Version 2 

Prototype Version 3 
• Processor evolution to Cypress PSoC 6 (CYBLE-416045-02). 
• Simplified external circuitry (main signal generator and op-amp integrated into PSoC). 
• Removal of AD9850 DDS and op-amp reduces cost. 
• Addition of a real-time-clock allows data readings to be time-stamped in the instrument itself, 

not in the mobile phone, allowing off-line data collection. 
• Choice of external, interchangeable OLED display.  
• Number of buttons was reduced to only one "test" button. 
• Option to allow battery charging from a solar cell. 

 
Figure 18: Cassava Quality Measurment Device - Version 3 
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5.2.2. Device Calibration and Field Tests  
The practical performance assessment of the test instrument is being validated through field 
experiments conducted at the International Institute of Tropical Agriculture (IITA) in Ibadan, Nigeria. 
Additionally, the evaluation extends to engagement with farmers across key cassava farming 
communities in the Southwestern region of Nigeria. 

These field experiments serve two main purposes: firstly, to improve the robustness of the test 
instrument, ensuring its durability and reliability in real-world conditions; secondly, to optimize the 
calibration accuracy of the device. This entails fine-tuning and validating the instrument's measurement 
capabilities for the precise and consistent estimation of starch content in cassava roots. By engaging 
both research institutions and end-users in these comprehensive field experiments, the overarching goal 
is to refine the test instrument, making it a robust, accurate, and user-friendly tool. 

   

 
Figure 19: Field trials of the device in Nigeria 
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6. Wireless communication interface 
This section introduces an efficient communication system able to transmit data from regions with 
limited internet connection to the central database. For the experiments, SynField SynOdos devices and 
handheld device for crop yield measuring are utilized.  

6.1. RapidNet Ad-hoc Mesh and Data Aggregator   
The developed RapidNet Ad-hoc mesh solution is a self-healing COFDM IP ad-hoc mesh system utilising 

software defined radio (SDR) platforms. Originally, the system was designed for scenarios lacking 

traditional communication infrastructure, such as law enforcement, first responders and critical civilian 

infrastructure protection organizations. Specifically, this system is suitable for situations where there’s 

no regular way to communicate, like phone lines or cell towers. However, it is also invaluable during the 

critical “Golden Hour” of incidents, where secure and reliable communication is essential. The system 

serves as a flexible, easily configurable and standalone communication solution, providing a local area 

network for first responders or seamlessly integrating with cellular networks for full internet 

connectivity.  

6.2. Modifications of RapidNet  
In the NESTLER project, the RapidNet system was modified to address specific scenario, where sensory 

data collected from various developed IoT devices needed to be integrated into a single transport stream 

and transmitted over a long distance range from rural areas, where cellular infrastructure is not 

available, or system throughput is not sufficient.  

The focus of the modifications was on seamlessly integrating the RapidNet node with the sensory data 

aggregator and making the RapidNet nodes applicable for the integration on a UAV. This enabled the 

creation of full connectivity between the local area networks with the remote locations where access to 

internet is available, resulting in the live stream of collected sensory data to the centralised NESTLER 

database. The main emphasis during the development process was on ensuring that power consumption 

of the airborne RapidNet node will not drain the UAV battery while weight and physical dimensions are 

suitable for integration on the available UAV. The block diagram of the developed solution is shown in 

the figure below. 

 
Figure 20: System architecture 
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6.3. System Integration 
A core component of the developed wireless system, the eBOS aggregator, was developed and 

implemented as part of the integrated solution. In preparation for the case study, ground sensors 

provided by SYNELIXIS and UCL were connected via BLUETOOTH and LoRa protocols to the eBOS 

aggregator and then, the aggregated data was streamed via mesh network. The figure below illustrates 

a schematic diagram of the developed aggregator. 

 
Figure 21: Aggregator architecture 

6.4. Initial testing and results 
The developed solution was integrated and tested in both laboratory and near-field conditions. 
Initially, an integration and testing of the various components and their connectivity was performed in 
the lab. Then, a first demo was conducted in the field, showcasing a seamless communication of UCL 
and SYNELIXIS SynOdos device (Figure 22) with the eBOS aggregator, which was connected to Rinisoft 
mesh units and a drone (Figure 23). 

 

Figure 22: UCL Crop Quality and  Synelixis SynOdos devices 
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Preliminary results show operational capabilities as expected, and the requirements for the final use 
case are being finalised. These preliminary results show operational capabilities of the integrated 
solution, while the work will continue to further develop and improve the different components as well 
as finalize the requirements for the final use case. 

Figure 23: System components at demo site 
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7. Sensors and Techniques for Livestock and 
Aquaculture Monitoring  

The primary objective of the Task 3.3 is the monitoring of wildlife, livestock, aquaculture well-being, and 
insects. To meet the task objectives, RiniSoft initially proposed the deployment of wearable devices for 
the real-time monitoring of large to middle-sized animals as part of solution T3.3. The proposed sensors 
were designed to track various parameters including geolocation, activity levels, and fundamental 
physiological metrics. The data collected by these sensors would then be transmitted to the NESTLER 
Cloud infrastructure for analysis and integration. 

However, through extensive consultations with our African partners who oversee the pilot projects, 
several critical issues were highlighted: 

1. Practicality: Wearable devices, while technologically robust, presented several practical 
challenges. These include the difficulty of fitting and maintaining devices on large or active 
animals, which often require repeated human intervention. 

2. Cost Efficiency: The cost associated with the production, maintenance, and replacement of 
wearable devices was identified as a significant barrier, particularly for large-scale deployments. 

3. Scalability: Wearable devices, due to their nature, pose challenges in scalability. The logistics of 
deploying and managing numerous devices across large populations of animals were seen as 
inefficient. 

4. Accessibility: Frequent access to animals for the purpose of fixing or replacing devices is not 
always feasible, leading to potential data gaps and increased operational overheads. 

In response to the feedback and specific requests from our African partners, we have revised our 
approach. The revised solution focuses on the deployment of video sensors, which offer several 
advantages: 

• Ease of Deployment: Video sensors can be strategically placed in animal habitats with minimal 
disruption, allowing continuous monitoring without the need for direct animal interaction. 

• Maintenance: These sensors require less frequent maintenance compared to wearable devices, 
reducing the need for constant human intervention. 

• Scalability: Video monitoring systems can be scaled up more easily, providing extensive 
coverage with a relatively low incremental cost. 

• Affordability: The cost per unit of video sensors is lower, and they offer a better return on 
investment due to their longer operational lifespan and lower maintenance needs. 

Additionally, based on the directives from our African partners, we have narrowed our focus to specific 
animal types that are more relevant to their contexts, namely chickens and fish. This specialization allows 
us to tailor our video sensor technology to the unique behaviors and environments of these animals, 
enhancing data accuracy and relevancy. 
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To meet the objectives of the task we propose to develop an AI monitoring system that analyzes video 
streams to identify potential diseases and specific behaviors indicative of illness or abnormal animal 
behavior in poultry and fish. To achieve these objectives, the proposed system will consist of two 
subsystems:  

• Chicken Farm Video Monitoring System 

• Fish Farm Video Monitoring System 

The system is built on a technology that uses primarily video analysis to measure animal health and 

behavior indicators. Computer vision and artificial intelligence play a key role in the development of the 

AI Monitoring System. A network of cameras produces a video stream used to identify animals inside 

farm buildings in real time. The animals do not have to be equipped with any instruments and the system 

works for any number of animals. It can also effectively measure a wide range of indicators.  

Video data was selected because it is a simple approach, which is not invasive and affordable for 

application in low income countries of Africa. In addition, cameras are relatively easy to install and can 

be scaled for larger flocks. At the same time, significant number of diseases changes the appearance and 

the behaviour of the bird, which could be captured using visual data. Same argument may be used for 

fish monitoring, where anomalies manifest themselves in the behaviour and movement of the fishes. 

For the reasons mentioned above, Machine Vision methods are used as a base for poultry disease 

detection. 

Machine Vision involves the use of various algorithms to enable machines to perceive and understand 
visual information. Classical techniques such as optical flow and SIFT (Scale-Invariant Feature Transform) 
have long been fundamental in extracting and analyzing visual data. However, the advent of Deep 
Learning in 2010th has ushered in a new era, where algorithms driven by neural networks have 
revolutionized Machine Vision. These newer approaches leverage convolutional neural networks (CNNs) 
and other deep learning architectures to autonomously learn and extract intricate patterns from images, 
significantly enhancing the accuracy and efficiency of visual recognition tasks.   

For more complex tasks, deep learning often demands substantial amounts of data for effective training, 
which can pose challenges in data acquisition and annotation. In this context, a combination of classical 
machine vision techniques with deep learning methodologies becomes particularly valuable. By 
integrating classical algorithms that offer robustness and efficiency in feature extraction with deep 
learning's capacity for complex pattern recognition, this hybrid approach can mitigate the need for vast 
quantities of labelled data. Leveraging the strengths of both methodologies not only enhances the 
learning process but also reduces the data requirements, making it a pragmatic solution for tackling 
intricate visual tasks where data availability might be limited or costly to obtain. 

In the domain of disease detection among chickens (poultry) and fishes, the absence of comprehensive 
open imagery datasets depicting various diseases and their discernible impacts on the appearance and 
behavior of infected animals presents a notable challenge. Discovered datasets focus primarily on more 
generic problems like animal’s detection and counting. For that reason, the final algorithm should be 
based on a combination of data-driven models for well-established tasks (like detection, tracking, 
matching, feature extraction) and domain-driven methods that utilize the expert knowledge. That 
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approach can often be formalized as a measure of the deviation from the normal appearance or 
behavior. For that reason, special attention is paid to one-class classification methods. 

In summary, the primary activities in this project stage involved the collection, labeling, and processing 
of data to create an annotated training dataset. This dataset serves as the foundation for training deep 
learning models designed for the real-time monitoring and detection of diseases and abnormal behaviors 
in poultry and fish. 

7.1. Poultry Health Monitoring  
The Poultry Health Monitoring System is designed to assess the health of poultry flocks through 
sophisticated analysis of multimedia data. At this stage we focus on the clinical symptoms that can be 
used for early warning and detection of chicken diseases and try to expound on these symptoms in detail 
via two dimensions: (1) early disease detection through physiological characteristics, and (2) early 
disease detection through behavioral characteristics. To detect these characteristics, some monitoring 
devices will be used, such as microphones and cameras to determine vocalizations; cameras to note 
birds’ activity; and digital cameras to determine the posture of the birds. 
 
The system functions across multiple layers: 

• Data Collection Layer: Includes IoT devices like cameras and microphones. 

• Data Analysis Layer: Consists of preprocessing and analyzing modules (Behavior Analyzer, 

Appearance Analyzer, Vocalization Analyzer) with CNNs for image recognition and classification, 

Deep SORT for tracking, and additional algorithms for vocalization analysis. 

• Decision-making Layer (Poultry health assessor module): Applies analytics to the metrics and 

parameters gathered, leading to actionable insights. 

7.1.1. Monitoring Parameters  
The AI's architecture and training in the context of monitoring poultry health is meticulously designed to 
align with the specific types of data collected, predominantly focusing on visual and acoustic information. 
This system, equipped with state-of-the-art cameras and sensitive microphones, captures a wealth of 
visual data and sound patterns that are essential for assessing the well-being of poultry. The visual data 
provides detailed imagery of the chickens, allowing for close monitoring of their physical condition, 
behavior, and environment. Meanwhile, the acoustic data offers insight into their vocalizations, which 
can be key indicators of stress, health, or discomfort. The AI, through its specialized architecture, 
analyzes these diverse data streams, learning to identify patterns and anomalies that might escape 
human observation. By training the AI specifically on these types of data, the system becomes adept at 
interpreting subtle signs of health issues or environmental stressors, thereby enabling timely 
interventions and ensuring optimal poultry health. This alignment of the AI's architecture and training 
with its data-centric focus ensures a robust, efficient, and highly effective monitoring system in the realm 
of poultry health management. 
Regarding visual information, it is possible to allocate various parameters for tracking and assessing the 

individual chicken health markers. A sophisticated AI system can track and assess various parameters to 

gauge the health of individual chickens. Firstly, Object Detection in Frame is utilized to precisely locate 

each chicken within a visual frame, employing a bounding box to pinpoint their position. This is crucial 
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for individual monitoring and analysis. Next, understanding the Location in Frame Coordinate System 

provides context to the chicken's behavior, such as their proximity to feeding zones or nesting areas, 

which can be indicative of their health and wellbeing. Further, the system employs Object Shape Analysis 

and Color Analysis to detect anomalies in visual features. This advanced analysis enables the 

identification of specific health markers like changes in plumage thickness or signs of watery eyes. These 

subtle visual cues are critical in classifying individual health conditions. Additionally, the AI conducts a 

Structural Integrity Assessment, examining the chicken's overall body condition. This involves looking for 

signs of emaciation or obesity, which are vital indicators of the bird's health status. Finally, Object Pose 

Estimation is used for Activity Classification. By analyzing the posture and movement of the chickens, 

the AI can infer various activities and behaviors, providing deeper insights into their physical condition 

and overall health. Together, these visual information-based parameters offer a comprehensive, 

nuanced view of each chicken's health, allowing for precise and proactive management in poultry care. 

Moreover, audio information parameters play a pivotal role in the realm of poultry health monitoring, 

complementing visual data with critical insights. The Overall Acoustic Noise Level of the Herd is a primary 

parameter, providing a general assessment of the ambient sound environment of the poultry. This can 

be indicative of the herd's collective behavior and well-being. Additionally, the analysis of Sound Wave 

Characteristics, including shape, frequency, amplitude, and phase, offers detailed insights into the 

specific sounds made by the chickens. These characteristics can reveal subtle changes in vocalizations 

that might signal distress or health issues. 

However, the analysis of these audio parameters is not without challenges. One significant obstacle is 

the Presence of Additional Sound Waves, which involves the difficulty of distinguishing specific chicken 

sounds amidst a cacophony of background noise. This includes dealing with sound effects like echoes, 

which can distort the true nature of the sounds. Another challenge is the Variability in Similar Sounds. 

Chickens may produce sounds that are similar in nature but vary in amplitude, frequency, and speed, 

making it challenging to accurately interpret their significance. Lastly, Signal Interference poses a 

considerable challenge. This occurs when overlapping signals with different amplitudes interfere with 

each other, complicating the process of isolating and analyzing individual sounds. Overcoming these 

challenges is crucial for the effective use of audio information in monitoring and ensuring the health of 

poultry. 

Within NESTLER, to assess the overall state of poultry flock, the following parameter is suggested to use:  
1. Flock Movement Consistency: Assessed using optical flow to measure the uniformity of 

movement across the entire flock. Metrics like variance and kurtosis of motion data give insights 

into the health of the flock. 

2. Individual Chicken Behavior and Health Markers, which includes: 

a. Activity Classification: Detecting behaviors like feeding, sleeping, or running using CNNs. 

b. Physical Markers: Identifying signs of potential illnesses, such as disheveled feathers, bald 

spots, or other anomalies. 

3. Chicken Vocalization Patterns: 

a. Frequency Distribution: Monitoring shifts or anomalies in vocalization frequencies over time. 
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b. Sound Type Classification: Identifying specific vocal patterns, like alarm calls or feeding 

sounds, to interpret the flock's mood and health. 

7.1.2. IoT Sensors and Devices 
When developing a general approach for constructing and AI-based monitoring system, we have 
identified several fundamental principles for the sensors required by the AI to detect potential illnesses 
in flock of birds. These principles include:  

1. Non-Invasive Monitoring: Utilize sensors that detect atypical behaviors without disturbing the 
animals. 

2. Continuous Operation: Sensors should work 24/7 and have a high Mean Time Between Failures 
(MTBF). 

3. Ease of Operation: The system should be operable without the need for specialized training. 

4. Damage Resistance: Ensure maximum protection against damage from farm workers or animals. 

5. Cost-Effectiveness and Serviceability: Aim for low-cost solutions with readily available service 
centers. 

6. Climate Compatibility: The system must be operable in equatorial Africa's climatic conditions. 
 
When deciding between the cameras for computer vision (CV) and machine vision (MV) for AI, of course 
MV cameras are preferable. But this type of cameras does not meet the requirements on simplicity of 
operation, cost and operability. Due to this fact it was decided to use CV camera. When selecting camera 
of this type, it is essential to choose the modification with built-in microphone and Power over Ethernet 
(PoE) power supply. In the NESTLER project, for the monitoring of poultry health, the following sensors 
and devices will be used: 

1. Video Cameras: High-resolution Hikvision IP bullet camera DS-2CD2083G2-IU (2.8mm), 8MP, 

2.8mm, Microphone, AcuSense, resized to 1920 x 1200 pixels. Video camera should be installed 

inside the chicken farm at the height of 3-5 meters. The refresh rate of information from the CV 

cameras is 25 Hz. 

2. Microphones: Built-in microphone from Hikvision IP bullet camera DS-2CD2083G2-IU with an 

Environment Noise Filtering is used. 

3. Computing Hardware: RiniSoft server for data processing and analysis. Server configuration - 

Intel Xeon E-2236, 6 Core, GPU A2 16 GB GDDR6, RAM 32 GB DDR4, 2 × 960 GB SSD SATA. 
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Figure 24: Hikvision IP bullet camera DS-2CD2083G2-IU. 

7.1.3. Monitoring System  

 

Figure 25: Poultry Health Monitoring System Functional Diagram. 

 
The components and modules of the system are described below: 

• Behavior Analyzer Module: For flock-wide behavior analysis based on flock’s optical flow. 

• Appearance Analyzer Module: For specific chicken behavior and physical health markers. 

• Vocalization Analysis Module: For vocal pattern recognition and classification. 

• Poultry Health Assessor Module: For creating predictions based on the analysis of the data 
gathered and processed through analyzer modules. 
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The various artificial intelligence (AI) methodologies and technologies used to monitor and detect 

diseases within a chicken population would include: 

• Statistical Models: Used for analyzing the optical flow and vocalizations. Compares current data 

to historical data to identify anomalies. 

• Convolutional Neural Networks (CNNs): Used for image recognition tasks, identifying and 

tracking individual chickens, and recognizing key points for health assessment. 

• Deep SORT Algorithm: Employed for real-time tracking of individual chickens across frames. 

• Sound Classification using CNNs: Classifies different types of chicken vocalizations based on 

their spectrograms. 

• Parameter Aggregation and Prediction: Combines all the parameters (flock movement, 

individual chicken data, and vocalization data) into a single health index for the flock. Applies 

predictive analytics to anticipate disease outbreaks. 

7.1.4. Gathering Chicken Farm Dataset (CFDS) 
Gathering, labeling, and processing high-quality data is crucial for training deep learning models that are 
both accurate and robust. This ensures the model's ability to generalize effectively to unseen data and 
perform optimally in real-world applications.  

The poultry dataset for the livestock monitoring task was primarily sourced from RINIS's chicken farm 
RiniSoft BioLab in Sliven, Bulgaria and various open sources. Consequently, the acquisition of "positive" 
disease instances was challenging due to the health of the observed chickens and ethical constraints 
against intentional contamination. Additionally, open-source datasets lacked a comprehensive array of 
diseased chicken examples. The available examples required detailed filming of each animal, conflicting 
with the requirement for minimal human interaction. 

 

 
Figure 26: CFDS Collection Diagram. 



HORIZON Research and Innovation Actions - 101060762: NESTLER 

Deliverable D3.1: Remote Sensing technologies and multi-modal data aggregation protocols 

Page 68 of 119 

In addressing the challenge of gauging population health through AI, it is crucial to curate annotated 
training datasets tailored to individual health threats. The utilization of these samples empowers the AI 
to learn and predict the emergence of specific diseases within the population, relying on distinctive 
symptoms discernible through video stream analysis. The requisite volume of annotated data for AI 
training adheres to the principles outlined in the Central Limit Theorem (CLT). 

The CLT posits that as the sample size increases, the distribution of the sample means approaches a 
normal distribution. In the context of AI training datasets, this implies that a larger volume of annotated 
data allows for more accurate predictions by the AI. 

To curate annotated training datasets specific to individual health threats, diverse data sources, including 
video streams, can be harnessed. These video streams capture visual symptoms associated with various 
diseases or abnormal movements. By annotating these videos with labels indicating the presence or 
absence of specific diseases or symptoms, a comprehensive dataset is created for effectively training the 
AI. The requirements of chicken farm dataset are listed in Table 26 of Annex A.  

It is important to note that datasets should be collected from different flocks of hens (each flock of at 
least 20 individuals). Each flock should be composed of chickens of the same breed and approximately 
the same age. Data should be collected for three age groups: 12-16 weeks, 36-40 weeks, 66-70 weeks. 

7.1.5. Behaviour Analysis Strategy  

Addressing the challenges in tracking individual chickens in a large flock within a confined area, we've 
shifted our strategy in behavior analysis. Instead of individual tracking, we now focus on analyzing 
average flock behavior per video frame. This includes patterns in eating, sleeping, and resting. We use 
models like YOLO to detect chickens in the video frame, crop these detections, and then apply another 
YOLO model to identify chicken parts and construct skeletons. This process aids in assessing the current 
actions of each cropped chicken. 

For the current implementation, an off-the-shelf implementation of trained YOLOv7 model was used. No 
changes to the architecture were applied, the model was trained on a combination of COCO dataset and 
our own small, labelled dataset, which includes a few thousand images with chickens. No tweaks to the 
training process were applied. 
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Figure 27: YOLOv7 training tensorboard for poultry health monitoring. 

The training of the algorithm took 80 epochs, the convergence was monitored manually, using 
tensorboard utility, which logs the metrics over training. An example of a training run of YOLOv7 training 
on joint COCO+Chicken dataset is demonstrated below: 

1. The results of the training were evaluated on a combined test set that consists of: 
197 annotated chicken images (2560 instances in total) 

2. 5000 images from the validation set of COCO, which do not contain any chicken (they were 
manually checked) are used for false positive assessment. 

A chicken was considered as detected for an Intersection over Union (IoU) of 0.3. A slightly higher value 
was selected due to the necessity of the obtained metrics are listed as follows. 

• ROC curve for true- and false-positive rates. The obtained dependency as shown at next figure, 
That figure shows that a realistic true-positive rate that would not result in an overwhelming 
number of false positives is 79.8%, which corresponds to 0.51% false-positive rate. Lower false 
positive rate threshold was selected in accordance with the performance of the behavior 
analytics algorithm, in order to ensure a more stable assessment of the flock activity. 
Average IoU for true-positives is 0.491 +- 0.026. 
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Figure 28: ROC Curve of model for poultry health monitoring. 

• Inference rates. Developed neural network was implemented on Pytorch and was tested on a 
board designed for embedded systems: Nvidia Jetson Xavier. It is a low-power board (20-30W) 
that has a light-weighted GPU with 384 general-purpose cores and 48 tensor cores.  
Before the performance tests, the obtained YOLO model was exported to a more efficient 
presentation, i.e. Tensorflow-1 protobuf graphs. This format allows for 2-3 times faster inference 
compared to standard Pytorch or Keras formats.  Overall, the model inference on 1000 frames 
took 59.3 +- 1.5 secs.  

Further improvement of the detector could be linked to the improvement and enrichment of the visual 
training dataset and, possibly, implementation of some special training hooks like MixUp, mosaic, 
SimCLR, etc. These training enhancement methods are widely used to improve the neural network 
quality. 

7.1.6. Optical Flow Analysis for Flock Mobility  

We have applied statistical optical flow analysis to detect anomalies in overall flock mobility. Data history 
and timestamps have been recorded to correlate with specific times of day and year. Currently, this 
analysis does not employ neural networks; instead, it focuses on collecting statistical outliers and 
assessing flock health based on threshold exceedances. 

The implementation of the algorithms is based on a combination of YOLOv7 detector (described above) 
and the analysis of the optical flow. We use Farneback optical flow, which we found out as a good 
compromise between speed and estimation density. YOLO detector is used to filter-out the detections 
that are not caused by chickens. The algorithm has a set-up (training) time, when it checks the main 
places of the activity of the birds by using the Kernel Density Estimators (KDE). over the evaluated optical 
flow. A projection of the resulted KDEs for our Rinisoft chicken on the camera frame is shown on the 
figures below: 
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Figure 29: RGB image and estimated speed/position PDF using KDE for poultry health monitoring. 

From the figures above it is clear that most of the activities happen in the open areas and near the feeder. 
This information is captured by the estimated probability density function (PDF) that is defined over time 
and space. 

 
Figure 30: Night-time image from RiniSoft BioLab. 

The space domain is given in pixels of the camera, thus a fixed position is assumed. Time domain is 
presented as 24-hour periodic space, encoded using sin-cos variables. Therefore, the final PDF is defined 

for 3 coordinates: (𝑥, 𝑦, 𝑡), which are implicitly translated to (𝑥, 𝑦, 𝑠𝑖𝑛(𝑡𝑚𝑜𝑑24), 𝑐𝑜𝑠(𝑡𝑚𝑜𝑑24)) 

(assuming 24-hour presentation of the time). In order to avoid small-scale variations causing significant 
changes, the space is coarsened, so that the PDF is estimated for every 3 hours and for every 200x200 
pixels. For each of the coordinates listed above, 2 probability functions are defined: probability of bird’s 
presence in the given pixel and the expected optical flow. The optical flow PDF is estimated using 
Parzen’s window approach, which is a compromise between evaluation speed and smoothness of the 
function. The window width is estimated using Silverman’s rule. 

In order to capture both day and night-time behavior, we propose day/night cameras, which can operate 
in near-IR spectrum. An example of night-time image is provided below 

At operation, the algorithm assesses the movement of the flock using tracking-by-detection approach, 
combined with Farneback optical flow. Movements and presences are averaged over time and then they 
are applied to the respective PDF function. Based on the average fitness of each of the detected chickens 
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to the estimated PDF, an average fitness score is computed. This fitness score is used as a parameter for 
anomaly detection. The score is averaged over chickens, which means that it can be applied for each 
chicken independently too. 

Currently, the existing dataset does not have long video sequences with infected chickens, so the 
validation of the algorithm is limited. However, some self-validation methods are applied.  

• We apply night-time optical flow PDF to day-time activity and compare that against the day-time 
PDF (simulation of over-activeness and over-feeding). The experiment is conducted on the data 
from 9AM till approximately 12PM, 1000 activity recordings. 

 
Figure 31: Day-time Data gathered from from RiniSoft BioLab. 

• We apply day-time optical flow PDF to night-time activity and compare that against the night-
time PDF (simulation of lack of activity and under-feeding). The experiment is conducted on the 
data from 3AM till approximately 6AM, 1000 activity recordings. 
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Figure 32: Night-time Data gathered from from RiniSoft BioLab. 

The results were somewhat unexpected, revealing that differentiating non-active behavior is more 
straightforward using the difference between PDF values. This observation could be attributed to the 
night-time PDF being comparatively "narrow" on average, leading to large negative log-probabilities on 
night data. In contrast, the day-time PDF, being relatively "wide," tends to capture night-time data with 
approximately 0-valued log-probabilities. However, the night-time PDF excels in capturing this data more 
accurately. 

7.1.7. Appearance Analyzer  
Due to the lack of labeled data on diseased chickens, we have used the DINO v2 self-supervised model 
to extract features from video stream frames. DINO v2 is a visual transformer that was introduced by 
Facebook in April 2023 and has shown outstanding results in different machine vision problems. The 
transformer was trained on a large image dataset, both labeled and unlabeled. The training process was 
based on self-supervised learning methods, which target to improve the generalization capability of the 
extracted feature vectors. As a result, DINO v2 extracts visual features that could be applied with no or 
minimal training to various problems and domains, including object detection, classification, semantic 
segmentation, image matching, etc. For example, DINO v2 “small” model’s features were used for 
semantic segmentation (SS) to obtain the result shown below.  
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Figure 33: Chicken images and respective semantic segmentation. 

As it is visible, chickens were properly identified as the same class. This was achieved just by selecting 
respective semantic classes, with no model pre-training. 

For our case, DINO v2 could be used to perform visual analysis of chicken’s appearance. As it is a highly 
problematic task to collect images and videos of different chickens with different diseases, it could be 
beneficial to apply anomaly detection methods for chickens’ visual appearance analysis.  

However, metric-based anomaly detection may not be applicable directly. DINO v2 was tested on an 
open chicken detection dataset, where some sick chickens are present. However, there are no 
annotations of which chickens are sick and which are healthy. However, 3 instances of sick birds were 
identified manually. DINO v2 dataset features were projected using PCA. 

 
Figure 34: Separation diagram and manually identification of 3 sick chickens. 

Green dots correspond to unlabeled instances, red dots correspond to manually selected sick chicken 
images. There is no clear separation, which could indicate that some additional training may be required 
to achieve better results. 
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7.1.8. “Poultry Fleas” Use Case  
The presence of skin parasites, primarily fleas, poses a significant problem in chicken farms. Fleas 
contribute to viral diseases, slow wound healing in equatorial or tropical climates, and feather loss as 
hens attempt to rid themselves of the parasites. These parasites carry pathogens responsible for 
brucellosis, encephalitis, salmonellosis, trypanosomiasis, and helminthic diseases. Their bites can also be 
dangerous to humans. Timely detection of fleas is crucial, as treatment is relatively easy and effective 
when their numbers are small. 

• Experimental Setup 
o To assess the feasibility of flea detection through video stream analysis, four out of 20 

hens in the RiniSoft Ltd biolab were intentionally infested with standard fleas 
(Ceratophillus gallinae). 

o Initial video analysis revealed a characteristic movement (shaking off) in the infested 
birds, distinguishing them from others. 

o This movement became observable in almost all birds within four days. 

• Characteristics of Flea-Induced Movement 
o Deep analysis determined that the duration of this characteristic movement was 

approximately 700 milliseconds on average. 
o Video clips were annotated to extract frames of this action for training the detection 

system. 

• Dataset Information 
o All videos in the dataset were recorded using Hikvision IP bullet cameras (DS-2CD2083G2-

IU, 8MP, 2.8mm, with Microphone and AcuSense). 
o The videos were resized to 1920 x 1200 pixels and saved in MP4 file format. 
o Although vocalizations are not currently analyzed, the recorded data may be used for 

further analysis in subsequent stages. 
 

7.1.9. Annotation Process and Dataset Augmentation 

Annotations were conducted by several team members using the Computer Vision Annotation Tool 
(CVAT)46. CVAT facilitated comfortable annotation of video fragments for training and testing prediction 
models. Annotations were exported along with video fragments in JavaScript Object Notation (JSON) file 
format. The annotations adhere to the Common Objects in Context (COCO) format, storing coordinates 
and object categories for each video. Approximately 83 video fragments (long time, 1 second) were 
annotated, generating 2075 images, extracted from 187 hours (16,830,000 images) of video footage. The 
dataset was expanded to around 75,600 seconds annotated video using the standard video editor. 

Out of the 75,600 video fragments (LT 1 sec), 23,400 were allocated for training, 2,560 for validation, 
and 2,560 for model testing. Dataset augmentation involved operations such as brightness change (from 
-15% to +15%) and cropping (maximum 10%). It's highlighted that instance segmentation annotation is 
more labor-intensive, requiring the drawing of polygons over each instance of chicken, compared to 

 
 
46 https://www.cvat.ai/ 
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drawing rectangles for the dataset used in training detection models. The use of the CVAT tool for 
annotation is visually depicted in Figure 35. 

 
Figure 35: CVAT user interface for labelling CFDS. 

7.2. Fish Health Monitoring System 
 

The Aquaculture Monitoring System is designed to assess the health of fish flocks through sophisticated 
analysis of multimedia data. It functions across multiple layers: 

• Data Collection Layer: Uses high-resolution underwater cameras for optical flow capture. 

• Data Analysis Layer: Employs statistical analysis and machine learning techniques for real-time 

health assessment. 

• Decision-making Layer (Fish Health Assessor Module): Applies the analyzed data to predict flock 

health. 

7.2.1. Monitoring Parameters  
In the advanced realm of aquaculture, a sophisticated monitoring system utilizing video image analysis 

is pivotal for maintaining the health and well-being of fish. This system encompasses several key 

Monitored Parameters. Object Detection is the primary feature, enabling the identification of individual 

fish or groups within the camera's field of view. This is crucial for tracking population dynamics and 

behavior. Linear Dimensions measurement plays a vital role in monitoring the growth and health of the 

fish, allowing for the assessment of their size and development over time. 

Location Tracking is another essential parameter, where the system determines each fish's position in 

the pool using the frame coordinate system, providing insights into their spatial distribution and 

movement patterns. Additionally, the Transparency of the Aquatic Environment is assessed, evaluating 

water clarity to gauge the environmental quality, which is integral to the health of the fish. 

On top of these monitored parameters, the system also calculates Computable Parameters. The Average 

Speed of a Fish Pack is calculated to understand the overall movement speed of the group. Changes in 
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this speed can indicate alterations in behavior or health. Similarly, the Average Speed of Individual Fish 

is monitored to detect any atypical behavior or health issues, offering a more granular view of individual 

wellbeing. Finally, Trajectory Tracking is employed, mapping the movement patterns of fish over time. 

This helps in identifying any unusual behaviors or stress indicators, contributing to a comprehensive 

understanding of the fish's environment and health in the aquaculture system. 

In the NESTLER project, to assess the overall state of fish flocks, the following parameter are suggested 

to be used:  

• Flock Mobility Consistency: Assessed by measuring the stability in optical flow variance over a 

given time period. 

o Health Indicator: Stable variance suggests a healthier flock; significant fluctuations 

suggest possible health concerns. 

• Individual Fish Behavior Metrics: 

o Behavior Classification: Detected behaviors such as swimming speed and patterns using 

CNNs. 

o Mobility Assessment: Evaluating each fish's movement characteristics. 

• Comparative Behavior Parameter: Statistical analysis of current behavior metrics against 

historical data to gauge overall flock health. 

7.2.2. IoT Sensors and Devices 

The approach for implementing a population health monitoring system in a fish farm, while following 
the same fundamental principles as the chicken farm, has specific adaptations suited to the aquatic 
environment.  

The basic principles remain consistent with those established for the chicken farm, emphasizing non-
invasive monitoring, continuous operation, user-friendly design, damage resistance, cost-effectiveness, 
and compatibility with local climatic conditions. The key difference lies in the sensor selection, 
particularly the exclusion of audio sensors. 

Given the aquatic environment and the nature of fish behavior, audio monitoring (microphones) is not 
required. Therefore, the chosen computer vision cameras will be similar to those used in chicken farms 
but without microphone capabilities. 
We use the following equipment in our system: 

1. Video Cameras: Hikvision IP bullet camera DS-2CD2083G2-I (4mm), 8MP, AcuSense. Video 

camera should be installed inside the chicken farm at the height of 3-5 meters. The refresh rate 

of information from the CV cameras is 25 Hz. 

2. Computing Hardware: RiniSoft server for data processing and analysis. Server configuration - 

Intel Xeon E-2236, 6 Core, GPU A2 16 GB GDDR6, RAM 32 GB DDR4, 2 × 960 GB SSD SATA. 

7.2.3. Monitoring System 
The main objective of the fish farm monitoring system is to provide early detection of health problems 
in fishes by continuously monitoring the reference speed of healthy fish and average diving depth of fish 
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parameters. This proactive approach helps in maintaining the overall health and well-being of the fish 
population and ensures the sustainable and efficient operation of the fish farm. 

"Reference Speed of Healthy Fish" (RSHF) measures the average swimming speed of healthy fish in the 
farm. This parameter serves as an indicator of fish activity levels. If the swimming speed of the fish 
decreases significantly, it may indicate a health problem such as infection, parasites, or stress. By 
comparing the current swimming speed with the reference speed of healthy fish, the monitoring system 
can detect any abnormal decrease in activity and alert the farm owners or managers. 

"Average Diving Depth of Fish" (ADDF) parameter is crucial for detecting gastrointestinal diseases. Fish 
affected by gastrointestinal issues tend to exhibit abnormal swimming behavior, including changes in 
diving depth. By monitoring the average diving depth of fish, the system can detect any sudden changes 
or deviations from the normal pattern. This parameter helps in detecting issues such as swim bladder 
disorders, digestive problems, or infections that affect the fish's buoyancy and swimming behavior. 

By continuously monitoring these two parameters, the fish farm monitoring system can quickly identify 
any deviations or abnormalities, allowing for early intervention and treatment. 

 
Figure 36: Functional Diagram of Aquaculture Monitoring System. 

 
The components and modules of the system are described below: 

• Appearance Analyzer: To analyze the individual fish’s overall physical health markers. 

• Behavior Analyzer: For flock-wide behavior analysis based on flock’s optical flow. 

• Fish Health Assessor Module: To provide health predictions based on aggregated parameters. 
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The various artificial intelligence (AI) methodologies and technologies used to monitor and detect 

diseases within aquaculture population include: 

• Statistical Models: Used for the analysis of optical flow to measure flock's overall mobility. 

• Convolutional Neural Networks (CNNs): For fish detection in video frames. 

• Deep SORT Algorithm: Used for tracking individual fish across frames. 

7.2.4. Gathering Fish Farm Dataset (FFDS)  

At this stage of the project, the database has been created using data gathered from the RiniSoft biolab. 
Although the project requirements specified that observations should focus on Nile tilapia, the current 
database is based on data from observing sturgeon species. 

This deviation from the initial project requirements suggests a need to reconsider the relevance of the 
collected data, given the biological and ecological differences between sturgeon and Nile tilapia. 

While video monitoring algorithms share common goals and techniques, they also differ based on the 
unique characteristics and behaviors of each species. 

7.2.4.1 Common Aspects 

1.      Object Detection and Tracking: 

o Detection: Identifying the presence of fish in the video frames. Common techniques 
include background subtraction, frame differencing, and advanced deep learning methods 
like convolutional neural networks (CNNs). 

o Tracking: Following the movement of individual fish across frames using algorithms such 
as Kalman filters, particle filters, or deep learning-based trackers (e.g., YOLO, DeepSort). 

2.      Behavior Analysis: 

o Recognizing and classifying behaviour such as swimming patterns, feeding, schooling, or 
resting using machine learning models. 

○ Analyzing interaction with the environment or other fish. 

3.      Environmental Monitoring: 

○ Recording and analyzing environmental parameters like water temperature, turbidity, 
and pH using integrated sensors. 

○ Correlating environmental changes with fish behavior. 

4.      Data Annotation and Training: 

○ Annotating large datasets to train machine learning models. 

○ Label video data using semi-automated or automated tools. 

5.      Anomaly Detection: 

Identifying unusual behaviors or health issues. 

Detecting changes in population dynamics or habitat conditions. 
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7.2.4.2 Differences 

While the foundational techniques for video monitoring of sturgeon and Nile tilapia share common 
ground in object detection, tracking, behavior analysis, and environmental monitoring, the specific 
algorithms and implementations vary based on the species' unique physical characteristics, behaviors, 
and habitats. Customizing these algorithms to suit the particular needs of each species will ensure more 
accurate and useful monitoring outcomes. 

The following table summarizes some differences between Sturgeon and Nile Tilapia.  

Table 15: Differences between Sturgeon and Nile Tilapia related to video survaillance 

Sturgeon Nile Tilapia 

Species-Specific Characteristics 

• Sturgeons are generally larger and have 
distinct body shapes (elongated bodies 
and bony plates) which might require 
specialized detection and tracking 
algorithms. 

• Often found in deeper, murkier waters 
which may affect the clarity of video data. 

• Smaller and more agile, requiring algorithms 
that can handle rapid and frequent 
movements. 

• Often found in shallower and clearer waters, 
which can improve detection but may also 
introduce reflections and light variations. 

Habitat and Behaviour 

• Benthic behaviour (bottom-dwelling) 
means algorithms must be adept at 
detecting fish against complex bottom 
substrates. 

• Migration patterns may necessitate long-
term monitoring solutions. 

• More active in the water column and near the 
surface, necessitating algorithms that can 
handle varied light conditions and surface 
reflections. 

• More prone to schooling, which can 
complicate individual tracking. 

Video Quality and Conditions 

• Sturgeon monitoring might require 
cameras that perform well in low-light or 
turbid water conditions. 

• Sturgeon monitoring might require cameras 
that perform well in low-light or turbid water 
conditions. 

At this stage of the project, the primary objective was to optimize the detection algorithms, with the 
specific fish species being non-essential. In subsequent phases, the focus will shift exclusively to Nile 
Tilapia. The base algorithms will be adapted to enhance the detection of smaller objects characteristic 
of this species. 
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When creating a training dataset for an AI-based fish disease classifier, it's crucial to consider the unique 
characteristics of the population environment and the capabilities of the project equipment. The 
information is exclusively available in video format, limited by the water transparency within which the 
fish swim. The determination of the dataset size is guided by the principles of the Central Limit Theorem 
(CLT). 

 
Figure 37: FFDS Collection Diagram 

 

  
Figure 38: NESTLER Fish Farm 

 
This project encompasses the gathering and dissemination of data through three primary dataset 

packages. Each package is summarized below, providing a description of the respective volumes of 

information. The requirements of the aquaculture farm dataset are listed in Table 27 of Annex A. 

It is important to note that datasets should be generated for one specific fish species. Each population 

should consist of at least 60-100 individuals of approximately the same age. Data should be collected for 

three age groups: fry, juveniles, adults. 
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7.2.5. “Fish Digestion Disorder” Use Case 

Fish health status monitoring is implemented on the fish farm engaged in artificial breeding of 
sturgeon. The breeding of sturgeon is one of the most attractive in economic and financial terms, as it 
requires rather low preliminary costs. 

  

Figure 39: General view of the fish pool 

 

To implement fish health status monitoring, video stream analysis is employed to identify signs of gill 
and digestive diseases in sturgeon. 

7.2.5.1 Gill Diseases: 

• Signs: 

o Decrease in the speed of movement by at least 20% of the average in the school. 

o Darkening of color. 

o Appearance of a whitish trace when swimming. 

Since sturgeon swim along individual trajectories, it is feasible to detect these parameters for infectious, 
parasitic, or toxicological gill issues. 

7.2.5.2 Digestive Diseases: 

• Signs: 

o Unwilled rise of fish to the upper layers of water with accumulated gases in the intestines. 

o Closed circular trajectory of movement on a small radius despite the large amount of 

available space. 

These signs indicate poor-quality nutrition or lack of microelements and proteins. Analyzing the video 
stream helps identify these signs, allowing preventive measures to be taken to avoid mass fish mortality. 
Notably, the highest mortality is observed among young fish with sizes up to 15-18 cm, with daily 
mortality reaching up to 0.5% of the total population. 
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Monitoring Reduced Activity: To monitor reduced activity, the average speed of an individual fish is 
compared to the average speed of the population over a 3-day period. A steady decrease below the 
average speed of the population indicates reduced activity. 

Detecting Intestinal Issues: To detect intestinal issues, the level of immersion in water and the 
defocusing of the outlines of the immersed body can be utilized. This defocusing occurs due to refraction 
and scattering of light. By knowing the geometric dimensions of the pools, camera parameters, and the 
level of water transparency, the height of the water column above the fish and the depth of immersion 
can be determined based on the image captured. An increased number of fish swimming within a depth 
of 10 cm or less from the water's surface suggests an accumulation of gases in the gastrointestinal tract 
(GIT), often caused by improper feeding practices.  

 
Figure 40: The process of detection and sizing of the fish objects. 

 
Figure 41: Defining the "defocus" level of a fish object. 
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Figure 42: ADDF calculation using video focus for fish health monitoring. 

 
Data Collection Setup: 

• A video collection system was established in the swimming pool. 

• Camera Positioning: 

o Height: 124 cm above the water surface. 

o Angle of the camera's optical axis to the horizon: 76°. 

Fish Population Details: 

• Fish Species: Acipenser baerii. 

• Number of Fish: 59. 

• Size Range: 8 to 14 cm. 

• Feeding: Once a day. 

• Water Conditions: 

o Temperature: Approximately 10-12°C. 

o pH Range: 7.0 to 7.5. 

Fish Characteristics: 

• All fish in the population were healthy. 

• No signs of disease were observed. 
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• Individual tendencies for residence were noted; the fish did not swim in schools, simplifying the 

calculation process by eliminating the need to account for the movement of a multi-element 

body. 

 
The average speed of a particular fish species was determined using the formula: 

〈𝑉〉 =  
1

𝑡2 − 𝑡1
 ∫ 𝑉(𝑡)𝑑𝑡

𝑡2

𝑡1

 

 

The parameter 'Reference Speed of Healthy Fish,' representing the mean square velocity of population 
movement, was calculated utilizing the standard formula: 

𝑣𝑚𝑠𝑞 =  √
𝑣1

2 +  𝑣2
2 + 𝑣𝑛

2

𝑁
 

 
The calculation was performed with an acceptable probability interval of 10%. This derived value will be 
employed in predicting the potential occurrence of gill diseases in this specific fish species in the future.  
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8. Remote Sensing in Agricultural Monitoring 
Remote sensing technology, employing satellites and drones, is a pivotal component in modern 
agriculture, providing comprehensive data for large-scale crop monitoring and management. Satellites 
offer macro-level views of agricultural fields, enabling the analysis of crop health and regional 
environmental conditions, while drones provide detailed, close-range imagery critical for precision 
farming practices. Together, these tools deliver invaluable insights for optimizing crop yields, conserving 
resources, and enhancing sustainable farming operations. This section presents the use of satellite and 
drone imagery within the NESTLER project. It details the specific satellite data anticipated for use, along 
with the capabilities of the Smart NESTLER drone. Additionally, it introduces AI-based algorithms 
designed to detect pest infestations through remote sensing.  

8.1. Satellite Imagery  
One of the tasks of the NESTLER project is the exploitation of the advantages offered to the agricultural 

market by satellite remote sensing technologies. Satellite imagery has become a vital tool that is 

reshaping the agricultural activities by providing a comprehensive picture of the crop fields. This 

technology helps farmers assess crop health, identify problems and implement targeted interventions 

for optimal yields. In addition, it plays a critical role in market forecasting, allowing informed decisions 

to be made based on trends and potential changes in crop production. 

8.1.1. Technological Aspects of Satellite Sensors  
The most important criteria for selecting a satellite for a particular project in agriculture are related to 
the spatial resolution of the sensor, the temporal resolution, and the sensor type. 

Spatial Resolution 
The spatial resolution of a remote sensing system refers to its ability to distinguish fine details and small 
objects in the imagery it captures. The choice of satellite imagery resolution in agriculture depends on 
the specific needs of the task at hand. In general, high spatial resolution provides detailed insights for 
precision management, medium resolution offers a balance for regional monitoring, and low resolution 
is suitable for comprehensive, large-scale assessments. The following table presents some of the 
advantages that each of the different spatial resolutions offers to agriculture management. 
 

Table 16: Advantages of different satellite imagery resolutions to agriculture monitoring. 

Spatial resolution Advantages to agriculture monitoring 

High  
(<5 meters/pixel) 

• Capture intricate details of small areas. 
• Allows farmers to closely monitor individual fields. 
• Facilitates the identification / monitoring of specific crop issues and 

overall plant health. 
• Particularly useful for precision farming practices and targeted 

interventions. 
• Supports efficient resource management. 
• Helps farmers address localized challenges effectively. 

Medium  
• Covers larger areas for comprehensive surveillance. 
• Ideal for regional monitoring and trend analysis. 
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(5 – 30 
meters/pixel) 

• Enables the assessment of broad patterns of crop health. 
• Useful for monitoring changes in land use over larger regions. 
• Provides valuable insights for planning and managing agricultural 

activities. 

Low  
(>30 
meters/pixel) 

• Covers extensive geographic areas with less detail. 
• Ideal for monitoring large-scale agricultural trends and assessing general 

conditions across vast regions. 
• Useful in detecting large-scale changes in land use. 
• Facilitates macro-level analyses for agricultural planning. 
• Serves as a complementary tool to higher-resolution imagery. 

 

Temporal Resolution 
Temporal resolution refers to how frequently a remote sensing system can capture imagery of the same 
area. Since, over time, satellites capture changes in crop growth, enabling farmers to track development 
stages, this temporal dimension aids in timely interventions and strategic planning for various 
agricultural activities. The choice of temporal resolution in satellite imagery depends on the specific 
agricultural application, balancing the need for real-time insights, trend analysis, and long-term planning. 
 
Sensor Type 
Satellite imagery is becoming more and more essential in providing farmers with crucial insights; from 
crop health assessment and monitoring to soil moisture and nutrient level estimation. However, 
different types of image sensors provide different types of information. For example, optical sensors 
offer visual assessments of crop health, while multispectral sensors expand the spectrum for more 
detailed crop analysis, showing information on chlorophyll levels. Thermal infrared sensors provide 
temperature-related insights, contributing in this way, for example, to a more optimized irrigation plan. 
This suite of satellite sensor types is able to enhance the overall agricultural efficiency of a field, as 
presented in the following table.  
 

Table 17: Satellite sensor types. 

Satellite sensor 
types 

Description Advantages to agriculture monitoring 

Optical 
Optical satellite data captures visible 
and near-infrared light, providing visual 
images of the Earth's surface. 

• Visual assessment of crop 
health, aiding in the 
identification of potential issues 

• Support in the classification of 
different land cover types 

Multispectral 

Multispectral data captures 
information across multiple spectral 
bands, extending beyond the visible 
spectrum. 

• Identification of specific crop 
types based on their spectral 
signatures 

• Assessment of nutrient levels in 
the soil, contributing to precision 
agriculture practices 
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Thermal 
Infrared 

Thermal infrared satellite sensors 
measure heat radiation emitted by the 
Earth's surface. 

• Support in the water stress 
estimation in crops by assessing 
temperature variations. 

• Irrigation scheduling based on 
surface temperature-related 
indicators 

 

8.1.2. Satellite Imagery in NESTLER 
In the NESTLER project, it is necessary to observe large agricultural areas and monitor the plant health 
constantly. Therefore, the satellite data that are foreseen to be used for the NESTLER project and comply 
with these requirements are presented in the following table and are selected to be 1. of medium spatial 
resolution to have a balanced area coverage and level of detail and 2. acquired weekly to have sufficient 
temporal coverage. 
 

Table 18: Satellite sensor data considered to be utilized by NESTLER. 

Satellite 
sensor 

Type 
Spatial 
Resolution  

Temporal 
Resolution 

Data 
format 

Data 
since 

Sentinel-2  
(ESA) 

Multispectral 10-60m 5 days JPEG2000 2015 

MODIS  
(NASA) 

Multispectral 250m - 1km 1-2 days HDF 1999 

Landsat 8/9  
(NASA/USGS) 

Multispectral 15-30m ∼ 8 days 
(combined) 

GeoTIFF 2013 
Thermal 100m 

 
Other available satellite imagery and products that could be beneficial to NESTLER activities and use 
cases are the following: 
Copernicus Global Land Service Products: 

• Part of the European Union's Copernicus program, offering various data services, including land 
monitoring with medium resolution imagery. 

ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) on Terra Satellite (NASA): 
• Resolution: 15 meters for visible and near-infrared, 30 meters for shortwave infrared, 90 meters 

for thermal infrared. 
• Applications: Detailed maps of land surface temperature, emissivity, reflectance, and elevation. 

 

8.2. Drone/UAVs (Unmanned Aerial Vehicles) 
NESTLER utilizes the full potential of drones in the collection and analysis of agricultural data. By 
employing these unmanned aerial vehicles (UAVS), NESTLER could effectively gather high-resolution, 
multi-spectral imagery from vast farming areas. This capability is crucial for various agriculture 
procedures, such us monitoring crop health and pest infestation. The data acquired by drones can be 
analyzed using advanced algorithms, providing valuable insights into various aspects of crop 
management. Essentially, NESTLER's use of drone technology represents a major advance in agricultural 
practices, offering a sophisticated and sustainable solution to farming challenges.  
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8.2.1. NESTLER Drone Solution 
The NESTLER Drone system designed to conduct aerial imaging for over the field consists of the Smart 
NESTLER drone, a multi-spectral camera, and a processing unit. The system is composed by the hardware 
components described in Table 19.  
 

Table 19: Smart NESTLER drone system. 

Equipment Description  Type 

Smart Agri 
Drone 

DJI Matrice 600 PRO, ideal for professional aerial photography with 
an extended flight time and a 5km long-range transmission, 
intelligent batteries, and maximum payload of 6kg. 

drone 

Multispectral 
camera 

Parrot Sequoia, multi-band sensor designed for agriculture, 
featuring excellent precision, flexible integration, and small size and 
weight, compatible with the Smart NESTLER Drone. 

Camera 

Processing unit NVIDIA Jetson Nano 4GB, a small computer which is able to run 
multiple neural networks in parallel for various ML applications like 
image classification, which is desired forpest infestation detection. 

Processing 
board 

 
Drone  
The DJI MATRICE PRO has been chosen and acquired to serve as the primary drone for incorporating 
additional modules into the UAV system. A photograph showing it in action during initial testing phases 
in the laboratory can be found in Figure 43.  
 

  

Figure 43: Images of Smart NESTLER Drone. 

 
Camera 
The UAV is equipped with the Parrot Sequoia+ as its multispectral camera. This camera is capable of 
delivering absolute reflectance measurements without the need for reflectance targets. Its impressive 
high resolution (11cm per pixel at 120 meters altitude) makes it highly suitable for Smart Agriculture 
scenarios. Additionally, the Parrot Sequoia+ offers versatility in triggering and data acquisition, aligning 
well with the requirements of the NESTLER project. The camera is illustrated in Figure 44.  
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Figure 44: Multispectral camera of Smart NESTLER Drone. 

 
Since the camera cannot be directly integrated with the chosen drone, a specialized mounting base has 
been crafted and 3D-printed to facilitate the attachment of the camera to the drone. The design of this 
custom base is illustrated in Figure 45.  

  
 

 
Figure 45: Camera's base of Smart NESTLER Drone. 



HORIZON Research and Innovation Actions - 101060762: NESTLER 

Deliverable D3.1: Remote Sensing technologies and multi-modal data aggregation protocols 

Page 91 of 119 

8.2.2. Data Collection  
RGB imaging  
Drone with the integrated camera can capture images in the Red, Green, and Blue spectral bands. This 
type of imaging provides high-resolution, color-rich photographs of the agricultural fields, similar to 
those taken by standard digital cameras. These images are essential for visual inspections, allowing 
farmers and agronomists to monitor crop growth, detect physical anomalies, and assess overall field 
conditions. RGB images are particularly useful for detecting issues that are visible to the naked eye. The 
images are associated with time information and geospatial/location information provided by GPS. 
 
Multispectral imaging  
Drone with the integrated camera can collect data across multiple spectral bands, including both visible 
light and near-infrared. This capability allows for detailed analysis of plant health and vitality. Those 
images can be used for calculating indices such as the Normalized Difference Vegetation Index (NDVI), 
which helps in assessing vegetation density, stress levels, and overall crop health.  
The above described data is accompanied with GPS coordinates, allowing for a precise geolocation of 
the captured data. This precision is crucial for creating accurate maps, monitoring changes over time, 
and guiding interventions in fields such as precision farming or environmental conservation. The synergy 
of these technologies in drones offers a powerful tool for detailed and efficient data collection across 
vast and varied terrains. The combination of imaging technologies and GPS in drones offers a robust tool 
for collecting comprehensive data across diverse agricultural landscapes, significantly contributing to the 
efficiency and effectiveness of smart farming practices. 

8.3. Pest Infestation Detection with Remote Sensing Solutions 
The pest infestation in crop cultivation is a significant problem, posing a major threat to agricultural 
productivity and food security. Pests, which include a wide range of insects, weeds, rodents, and 
microorganisms, can cause serious damage to crop since they are feeding on various parts of the plants. 
This can lead to reduced plant growth and yield. Additionally, pest infestation can also result to long-
term soil degradation, increased vulnerability to future infestations, and increased use of chemical 
pesticides. In economic terms, pest infestations can lead to increased costs for farmers due to the need 
for pest control measures and can cause fluctuations in market prices due to the unpredictability of crop 
yields. Consequently, effective pest management is crucial for sustainable agriculture and the 
stabilization of food supplies.  

8.3.1. Monitoring System  
NESTLER designs and develops an advanced monitoring system to effectively detect pest infestation in 
crops. Pest infestation is treated as a visual problem, which is tackled leveraging computer vision and 
deep-learning methods. In this scope, remote sensing solutions are being explored as proactive method 
against pest infestation in agriculture. Additionally, advanced deep-learning models able to accurate 
detect and classify different pests based on their appearance on leaves are trained, evaluated, and 
utilized by the NESTLER monitoring system. Those AI models are integrated in a mobile application 
equipped with on-demand features that enable the detection and precise localization of pests within a 
crop field.  
Various pests, each with their unique behaviours and effects, can cause many problems at different 
crops. Focusing on specific pests is crucial to develop robust technologies for pest detection. By 
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understanding the challenges posted by each type of pest, targeted and effective solutions can be 
designed. The NESTLER monitoring system should be tailored to focus on and detect the types of pests 
that are of particular interest to the pilot project's owners. This approach ensures the system's 
applicability and efficacy in addressing the specific pest management needs of the users.  
The types of crops, that the NESTLER monitoring system should be capable of monitoring for pest 
infestation, are identified based on the review of risks on food security as well as the research on 
historical case studies that are detailed described and listed in the D1.1 “NESTLER Platform 
Requirements” [56]. This approach ensures that the system could be able to address the most significant 
agricultural challenges and is informed by a comprehensive understanding of past pest infestation 
scenarios and their impacts on crop health and yield.  
As it is reported by the stakeholders of the NESTLER pilots, maize and other cereal crops are vulnerable 
to attacks by fall armyworms. The initial damage appears as ragged holes in the leaves of plants. The 
larvae of the pest feed on leaves, resulting in plant damage and a consequent reduction in crop yield. 
Fall armyworm infestations have been reported in Rwanda and Nigeria. Moreover, tomato crops are 
severely threatened by the tomato leaf miner Tuta absoluta, a dangerous pest in Africa. Its larvae feed 
on various parts of the tomato plant, including leaves, stems, and fruits, creating damaging galleries and 
burrows. This infestation often leads to over 80% yield loss, significantly impacting the economy by 
increasing tomato prices and contributing to nutritional insecurity. This pest has had an impact in 
countries like Rwanda and Nigeria. Coffee crops can suffer from infestations of various pests, including 
the Antestia bug and aphids. These pests can significantly reduce productivity, leading to decreased 
income for farmers and increased production costs for the coffee industry, as observed in Rwanda.  

Cacao tree plantations are afflicted by black pod disease Phytophthora palmivora. Infected fruits develop 
hard brown spots with a white spore layer, and the disease can also impact leaves, twigs, and roots. In 
Cameroon, black pod disease is a critical constraint on cocoa yield, causing up to 80% of crop loss under 
favourable conditions for the disease. Last but not least, locusts, a type of short-horned, are one of the 
world's most destructive migratory pests. They can damage a wide variety of crops, pastures, and trees 
by consuming large amounts of vegetation quickly. Their control often involves pesticides that can be 
harmful to humans. These pests have notably affected regions like Uganda, Ethiopia, and Kenya. Table 
20 lists the crops along with the corresponding pests they may be infested with, as reported by the 
stakeholders of the NESTLER pilots in the D1.1. It should be mentioned that the NESTLER monitoring 
system focuses on the effective detection of infection or infestation of the aforementioned field crops 
by the specified pests and diseases. 

Table 20: Crops affected by pests based of user requirements of NESTLER pilots.  

Field Crops Pest 

Maize and cereal  Fall Armyworms 

Tomatoes Tomato leaf miner 

Coffee Antestia bug, aphids 

Cacao Black pod disease 

Various crops Locusts 
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8.3.2. Satellite-based Pest Detection  
The primary goal of this module is to mitigate the impact of insect pests on food security. Through prior 
analysis, it has been identified that one of the most dangerous pests is the invasion of locust swarms, 
causing widespread destruction to crop along their migration route. Various strategies exist for pest 
control, including the use of chemicals for extermination, mechanical traps and nets, and diverse 
methods for swarm deterrence. Notably, locust swarms pose a significant threat due to their destructive 
nature. Another noteworthy consideration is that insects themselves can serve as a valuable protein 
resource, particularly in regions with limited access to such resources. Enabling accurate forecasting and 
detection of swarm emergence locations before take-off opens the possibility of using ground 
equipment to collect insects on an industrial scale for processing. 

Predicting the development of locust swarms in expansive territories relies on aerial reconnaissance data 
obtained through drones, airplanes, or land monitoring satellites. To enhance this predictive capability, 
the NESTLER project leverages valuable information sourced from a satellite constellation specializing in 
gathering detailed data on crops in Africa. SENTINEL, as part of this constellation, plays a crucial role in 
providing specific insights into crop conditions and locust-related factors. 

Satellite information is archived in a dedicated database and is accessible in the original UFAX format, 
ensuring no data loss through uncompressed storage. The suggested approach to identify the likely 
location of swarm initiation relies on soil conditions and meteorological data. Consequently, the 
challenge is streamlined into a category of mathematical prediction methods utilizing multivariate 
analysis within the realm of image processing. 

To acquire input data, our sources include agricultural sensors, the Sentinel-2 satellite, and 
meteorological data. These data undergo thorough pre-processing, which includes atmospheric 
correction. Within the logical framework, we employ fuzzy logic algorithms to harmonize all essential 
parameters. As a result, users will obtain output data comprising the coordinates and radius of insect 
locations, the specific type of insect (indicating its developmental stage), and a certainty degree 
regarding the presence of insects in the designated area. 

The system structure is comprised of several key modules: Detection Modules, Recognition Modules, and 
Decision Modules, the latter employing Artificial Intelligence (AI) with neural network capabilities. 

Insect Detection Module (IDM) 
To identify potentially hazardous population of insects, such as locusts, primary analysis will be 
conducted using images captured by multispectral cameras on Earth remote sensing satellites. Upon 
detecting objects with suitable entomological signatures, a UAV equipped with an IR camera will be 
deployed for an additional survey of the area. The information gathered from the UAV will serve to either 
confirm or deny the presence of entomological threats to the crops cultivated in that particular region. 

Insect Detection Modules perform the following functions: 
1. Prediction of Locust Swarm Migration Routes: Utilizing Sentinel-2 multispectral images to 

forecast locust swarm migration routes, preventing potential damage to vegetation. 
2. Detection of Optimal Desert Locust Habitat Conditions: Employing historical, climatic, soil, 

multispectral, and wind flow data to identify the most favourable conditions for locating locust 
swarms. 

3. Identification of Temporal and Thermal Signatures: Enhancing detection accuracy by identifying 
specific temporal and thermal signatures associated with the chitinous cover of locusts. 
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4. Detection of Desert Locust Breeding Grounds: Identifying breeding grounds of Desert locusts to 
facilitate the implementation and improvement of control measures, such as chemical and 
mechanical control. This is particularly effective when locusts are immature and wingless, limiting 
their mobility. 

5. Integration with NESTLER Cloud for the Food Industry: Transmitting locust data to NESTLER Cloud 
for utilization in the food industry, ensuring timely and informed decision-making. 

The output of this module should identify the most probable locations where locust swarms originate. 
The process of prediction is shown in Figure 46.  

 
Figure 46: The process of the prediction of the entire Sentinel-2 image [57] 

Insect Recognition Module (IRM) 

To precisely determine the presence of pests in potential areas, additional reconnaissance is essential, 
employing UAVs equipped with thermal optical modules. The captured images undergo on-board pre-
processing within the UAV and are subsequently transmitted to the NESTLER Cloud for informed 
decision-making. 

Tasks includes: 

1. Confirmation of Pest Swarm Presence: Utilizing thermal optical modules to confirm the existence 
of a swarm of pests in the designated areas. 

2. Estimation of Developmental Stage: Employing image data to roughly determine the 
developmental stage of the pest flock, providing valuable insights for effective pest management 
strategies. 

 
Decision Making Module (AI-based) 
Utilising data from IDM, IRM, Locus Hub, and Meteo World, this module is designed to accurately 
ascertain the probable emergence locations, developmental stage, and approximate biomass of locust 
swarms. Additionally, if information regarding existing technical and human resources is available, it 
enables the assessment of the economic feasibility of collecting the emerging biomass and determines 
the optimal timing for such actions. Successful operation of this module requires the design, 
implementation, and training of a neural network tailored to this specific task.  
 
Training using multispectral data  
The neural network training period uses original multispectral data (Sentinel-2 Level-1C products in the 
SAFE format directly from the European Space Agency's (ESA) Copernicus Open Access Hub) for the past 
years using our algorithms to predict the location of different locust types based on vegetation indices, 
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meteorological data, soil data and historical data. In the training phase of the neural network, the 
annotation from 2015 to 2023 includes the following critical data: 

• Locust type: hoppers, adults, bands, swarms 

• Locust location 

• Date of locust emergence 
 
The neural network training utilizes original multispectral data, specifically Sentinel-2 Level-1C products 

in the SAFE format directly sourced from the European Space Agency's (ESA) Copernicus Open Access 

Hub. The training process employs proprietary algorithms designed to predict the location of different 

locust types. This prediction is based on a comprehensive set of features, including vegetation indices, 

meteorological data, soil data, and historical data. 

To validate the accuracy of the predictions, the annotated data and validated historical information are 

used. This multi-faceted approach ensures that the neural network is trained on a robust dataset and 

can effectively predict locust occurrences based on various influencing factors. 

In the context of Desert locusts S. gregaria, the incubation and development periods are intricately 

linked to both soil and air temperature. The incubation period spans between 14 and 22 days under soil 

temperatures typically ranging from 27–32 °C in the region. Following incubation, immature Desert 

locusts undergo various developmental stages while remaining grounded for an additional 35–45 days. 

Consequently, depending on the developmental stage of the hopper, optimal environmental conditions 

for egg laying must be met approximately 3–10 weeks prior to the observation date. This nuanced 

understanding of the temporal relationship between moisture conditions, incubation, and 

developmental periods enhances the precision of forecasting models and contributes to more effective 

pest management strategies. 

8.3.3. Drone with Multispectral Sensor and On-Field Research for Pest Detection  
The utilization of drones equipped with multispectral cameras for pest infestation and disease detection 

in agriculture represents a significant advancement in crop management and protection. The drones, 

flying over fields, capture high-resolution images using multispectral imaging technology, which goes 

beyond the visible spectrum. This technology is particularly effective in identifying changes in plant 

health that are not immediately apparent to the naked eye or in the initial stage of the development, 

often a key indicator of pest infestation. The work in [58] presents a method for detecting vine diseases 

using multispectral images from UAVs combined with a deep learning segmentation approach. The same 

authors introduce VddNet [59], a vine disease detection network that utilizes multispectral images and 

depth maps. Additionally, research on the detection of olive trees affected by Xylella fastidiosa using 

multispectral imaging from UAVs has been conducted in [60]. Moreover, the work in [61] presents how 

pixel-based classification of banana fusarium wilt can be performed using aerial UAVs capturing RGB and 

multispectral images in the Democratic Republic of Congo. 

A drone equipped with a multi-spectral camera can capture images which, when processed through the 

proper analysis, can provide insights and indicators about the biotic and abiotic stress in crops for the 

displayed areas of images. Biotic stress refers to the negative impact on plants caused by living organisms 
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such as fungi, bacteria, viruses, nematodes, insects and mites, weeds and parasitic plants, which can lead 

to diseases and infestations that affect plant health. Abiotic stress, on the other hand, involves non-living 

climatic and environmental factors like temperature extremes, drought or waterlogging, solar radiation, 

nutrient deficiencies or excesses, salinity, heavy metals, acidity or alkalinity etc. which can adversely 

affect plant growth, reproduction and survival. Early-stage detection of these stresses allows for more 

targeted crop management practices, potentially saving large portions of crops from severe damage. 

Early-stage detection in plant science and crop sensing refers to the identification of plant diseases or 

pest infestations during the initial stages of symptomatic phase, when visible symptoms are just 

beginning to appear but are still minimal or localized. This detection aims to catch the onset of disease 

or infestation at the earliest visible stage, enabling prompt intervention to mitigate further spread and 

damage, and typically relies on high-resolution imaging or close inspection to identify these early signs. 

Multispectral imaging captures light at multiple wavelengths, including both the visible and invisible 

spectra (such as near-infrared). Healthy vegetation reflects light differently than stressed vegetation. 

These changes, although subtle, can be detected by multispectral sensors. Multispectral images can be 

used to calculate vegetation indices that provide insights into plant health and growth patterns, such as 

Normalized Difference Vegetation Index (NDVI), the Soil-Adjusted Vegetation Index (SAVI), and the 

Enhanced Vegetation Index (EVI). Each of these indices serves as a quantitative measure of vegetation 

health and vitality, providing essential insights into plant growth patterns and stress levels. By analyzing 

these images, algorithms identify unhealthy and stressed areas, often before the problem is visible to a 

human observer or in the initial stages of the development. One possible cause of these unhealthy and 

stressed areas could be the presence of pests and diseases, as plants in situations caused by such factors 

exhibit changes in their reflective properties. 

Many studies have focused on using NDVI to identify areas affected by diseases and insects. The research 

in [62] demonstrates that NDVI of soybean plants was more associated with pest distributions than other 

variables, such as soybean plant heights and defoliation estimates. Specifically, it suggests that lower 

NDVI values often correspond to higher pest activity and associated plant stress. Additionally, the work 

in [63] focuses on the detection of sugarcane aphid injury to grain sorghum and presents that plant stress 

increases as plant injury intensifies, leading to lower NDVI values, indicating that NDVI decreases with 

greater plant injury. The authors in [64] develop a method to identify unhealthy bananas from disease 

or insects’ zones using multispectral UAV data and determining optical vegetation indexes. The results 

of this paper demonstrate that NDVI is the optimal NIR vegetation index to develop an identification 

model for banana plants damaged by disease and insect infestations. Moreover, regular NDVI monitoring 

can track the health of vegetation over time. Specifically, the temporal analysis can reveal emerging 

patterns of stress or disease, helping to pinpoint affected areas before the disease spreads extensively. 

Moreover, NDVI time series from Sentinel 2 imagery may be used to detect early signs of pest-induced 

diseases in vegetation [65]. By applying continuous change detection and classification and trend 

analysis algorithms, the study effectively identifies and maps subtle vegetation anomalies over time, 

providing crucial insights into the spatial and temporal dynamics of disease progression caused by pests. 
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The NESTLER monitoring system leverages drone with multispectral camera to provide indicators of 

potential pests and diseases in crops. Specifically, this system utilizes a drone equipped with a 

multispectral camera to capture images, which are then analyzed to calculate various vegetation indices 

like NDVI. The analysis identifies areas of stress caused by climatic factors, such as extreme heat or water 

scarcity, as well as zones potentially affected by insects and diseases. If the indicators show concerning 

levels of stress, detailed field investigations may be necessary to determine the causes of these issues. 

Users can then visit these areas to conduct further investigations using the NESTLER mobile application, 

which provides information on whether crops are affected by pests and diseases or not. The proposed 

solution is presented in Figure 47. 

 
Figure 47: NESTLER monitoring system 

Research in this domain suggests that one of the most promising vegetation indices is the NDVI, a 

straightforward graphical indicator used to analyze remote sensing measurements. It assesses whether 

the observed target contains live green vegetation. 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

where NIR stands for near-infrared light and Red stands for visible red light, is crucial in this context. 

Healthy vegetation reflects more near-infrared and green light compared to other wavelengths. 

However, when plants are stressed, such as by pest infestation or disease, their ability to reflect NIR light 

diminishes, while the reflection of visible light, particularly red, increases. By analyzing the NDVI data, 

drones can identify early areas of stress in crops due to pests. In addition, integrating and analysing data 

from other vegetation indices such NDRE which is more sensitive to changes in chlorophyll content and 

especially at mid and later crop growth stages, provides a more comprehensive view allowing more 

correlation with affected areas. Moreover, we might consider investigating NDVI/NDRE time-series to 

monitor and detect continuous changes in the field. By analyzing these time-series data, we can track 

the progression of vegetation health over time to pinpoint the onset of any abnormalities that may be 

caused by pests and diseases. 
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In the proposed solution, the multispectral camera of the drone would capture high-resolution images 

in both the NIR and visible spectra. These images are then processed to calculate the NDVI/NDRE for 

each pixel. The resulting map provides a detailed view of the crop health, highlighting areas of concern 

[60]. The high mobility of drones allows for frequent and consistent monitoring, ensuring early-stage 

detection of affected areas. In such cases, field inspection is required to ascertain the cause of the stress, 

which could be due to pest infestation or other factors affecting crop health. This ground-truthing step 

is crucial for implementing targeted interventions and managing the issue effectively. 

The proposed solution offers early-stage detection by identifying and localizing unhealthy or affected 

areas as soon as the first signs emerge. With immediate user involvement, who visit the field and use 

the NESTLER mobile application, potential pest infestations or disease infections can be promptly 

identified. This early-stage detection is crucial for controlling pest outbreaks, as it allows for timely and 

localized treatment, thereby minimizing the need for widespread pesticide use. 

8.3.4. AI-based Pest Infestation Detection  
Based on the NDVI analysis, conducted from multispectral images of drone, the user can visit the field 

and perform a thorough investigation of the potential pest infestation using the NESTLER mobile 

application. This application, empowered by robust AI algorithms, offers an advanced level of pest 

detection and identification. The AI algorithms within NESTLER are trained on publicly available datasets 

encompassing various pest types. They employ advanced object detection architectures, such as YOLO 

v8, to accurately identify and classify different pests in real-time. This feature enhances the user's ability 

to quickly and effectively assess the situation on the ground, complementing the initial drone-based 

survey. 

It's important to note that the technologies employed in the NESTLER application can be used 

independently of the drone-based NDVI/NDRE analysis. While the combination of aerial surveillance and 

ground-level AI-assisted inspection provides a comprehensive approach to pest management, each 

technology offers significant value on its own. In scenarios where drone surveillance is not feasible, the 

NESTLER app's advanced object detection capabilities can still provide vital insights into pest activity, 

enabling effective pest management strategies. This flexibility allows for a wide range of applications in 

different agricultural contexts. 

8.3.4.1 Maize & Coffee  
The goal of this classification algorithm is to detect pests attacking Maize or Coffee on an image and 
classify the pests detected based on the name. To reach this goal, we assessed three pre-trained models 
using transfer learning algorithms with our dataset in order to develop our algorithm. 

The dataset that we used can be found on Kaggle website [66]. This Dataset is a carefully curated 
collection of photos of 14 distinct types of insects often found in agricultural environments. This 
collection contains useful visual resources for identifying and studying the characteristics of these 
potentially dangerous insects. Each insect is represented by a series of images that highlight its 
distinctive features, colours, and patterns.  
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Amongst the insect types represented in the dataset the following are maize pests: 
• Armyworms; 

• Corn borers; 

• Aphids. 

Amongst the insect types represented in the dataset the following are coffee pests: 
• Beetles; 

• Aphids 
 

 
Figure 48: Pests attacking maize and coffee 

The table below shows the distribution of image classes of the insect types in the dataset. 

 
Figure 49: Distribution of image classes in the dataset of maize and coffee 

 
8.3.4.2 Assessment of pre-trained models 
We implemented transfer learning using our dataset of insect images on the following three models 
known for their high performance on image classification: 

• EfficientNet [67]; 

• Resnet [68]; 

• MobileNet [69]. 
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The performances metrics for each model are displayed on the table below: 

Table 21: Performance metrics for trained AI models for pest infestation detection on dataset of maize & coffee 

 Accuracy (%) Weight 
(MB) Model Training set Validation set Testing set 

EfficientNet 68 69 72 352 

Resnet 92 88 89 37 

MobileNet 94 91 88 35 
 Precision (%) Weight 

(MB) Model Training set Validation set Testing set 

EfficientNet 70 67 68 352 

Resnet 80 79 73 37 

MobileNet 90 83 77 35 
 Sensitivity (%) Weight 

(MB) Model Training set Validation set Testing set 

EfficientNet 45 53 53 352 

Resnet 88 87 83 37 

MobileNet 89 86 83 35 
 Specificity (%) Weight 

(MB) Model Training set Validation set Testing set 

EfficientNet 76 85 87 352 

Resnet 92 90 87 37 

MobileNet 91 91 92 35 

The above table clearly shows that MobileNet outperforms the two other models. Consequently, we 
pursue the implementation of the algorithm with it. 

8.3.4.3 Fine-tuning of selected pre-trained model 
The above clearly shows that MobileNet outperforms the two other models. Consequently, we pursue 
the implementation of the algorithm with it. 
 

 
Figure 50: MobileNet accuracy across epochs for pests in Maize and Coffee crops 
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8.3.4.4 Tomatoes  
The detection of tomato leaf miner Tuta absoluta, is of paramount importance in tomato cultivation due 

to its devastating impact on tomato crops. This pest has rapidly spread to many parts of the world, 

causing significant damage to both greenhouse and open-field tomato production. Tuta absoluta larvae 

feed on tomato leaves, stems, and fruits, leading to substantial yield losses and reduced crop quality. 

Early-stage detection and management of this pest are crucial, as it can be reproduced quickly and 

develop resistance to chemical pesticides. Effective monitoring and timely intervention can significantly 

mitigate the damage caused by the pest, ensuring the sustainability and profitability of tomato farming. 

For the effective detection of Tuta absoluta in tomato crops, we have developed an advanced object 

detection model using [70]. This model is trained and rigorously evaluated using an openly available 

dataset specifically curated for this purpose. The dataset comprises of 1518 images, which are 

systematically divided into 1278, 169, 80 images in training, validation, and testing sets. Each set contains 

a balanced mix of images representing two key categories: "Healthy" and "Tuta absoluta-infested" 

samples. In total, the dataset encompasses 2872 number of instances, offering a comprehensive view of 

both healthy and infected tomato conditions. Figure 51 illustrates the distribution and category of 

instances across the training, validation, and test sets, providing a clear overview of the data used to 

train and validate the effectiveness of our YOLOv8-based model in identifying tomato leaf miner 

infestations. It is observed that the dataset is imbalanced. Consequently, for evaluating the object 

detection model, reliance on accuracy alone—which can be misleading in cases of class imbalance—is 

avoided. Instead, the mean Average Precision (mAP) is employed as the primary metric. mAP offers a 

more reliable measure of model performance across different classes by accounting for both precision 

and recall, which are essential in datasets where one class significantly outnumbers another [71], [72]. 

 
Figure 51: Number of instances per class of Tuta absoluta dataset 

 

To enhance the accuracy and effectiveness of the YOLOv8 model for detecting Tuta absoluta in tomato 
crops, we have undertaken a fine-tuning process using our specialized dataset. This fine-tuning was 
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conducted over a span of 20 epochs, a strategic choice that balances the need for thorough learning 
against the risk of overfitting. During this process, YOLOv8 was exposed to various instances of healthy 
and Tuta absoluta-infested tomatoes, enabling the model to refine its detection capabilities.  

Evaluating the performance of a trained AI model is crucial to assessing its effectiveness. For object 
detection tasks, it's essential to adopt suitable evaluation metrics to assess object detectors' 
performance, such as Average Precision (AP), Mean Average Precision (mAP), and visual inspections. The 
performance of our AI model, that detects the appearance of Tuta absoluta in tomatoes, is evaluated 
using the mAP metric, which provides an overall precision score for the model. The mAP of each epoch 
is visualized in Figure 52. A key component to calculate AP and mAP is Intersection over Union (IoU), 
which measures the overlap between predicted and ground truth bounding boxes, helping categorize 
predictions as true positives (TP), false positives (FP), or false negatives (FN) based on an IoU threshold, 
often set at 0.5. Utilizing this categorization, the precision and recall values are calculated based on the 
equations below: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 +  𝐹𝑃)
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 +  𝐹𝑁)
 

 
To calculate the mAP, it is important to compute the average of the Average Precision (AP) scores across 
all classes. 
AP is the average of all precisions on different thresholds regarding the precision-recall curve. It is 
calculated by the following equation: 

 

  𝐴𝑃 =  ∑ (𝑅𝑒𝑐𝑎𝑙𝑙𝑠(𝑘) − 𝑅𝑒𝑐𝑎𝑙𝑙𝑠(𝑘 + 1)) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠(𝑘)

𝑘=𝑚−1

𝑘=0

 

  

where 𝑚 is the number of IoU relevant thresholds. Having computed AP for all classes, mAP is defined 
as the mean value: 

𝑚𝐴𝑃 =  
1

𝑛
 ∑ 𝐴𝑃𝑘

𝑘=𝑛

𝑘=1

 

  
where 𝑛 is the number of classes and 𝐴𝑃𝑘  is the average precision of class k. 
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Figure 52: mAP across epochs for training AI model for pest infestation detection of Tuta absoluta 

 
Table 21 presents the performance metrics of an object detection model, specifically YOLOv8, after being 
fine-tuned to identify Tuta absoluta dataset in tomato crops. Across 80 images, the model detected a 
total of 160 instances, achieving a mean Average Precision (mAP) of 0.92, indicating a high level of 
precision in its overall detection capability. For the class labeled 'Healthy', which is the minority class, 
the model identified 20 instances with an even higher mAP of 0.96, showcasing exceptional accuracy in 
recognizing healthy tomatoes. This suggests that despite the imbalance, the model is highly effective in 
identifying the minority class correctly. This performance indicates robust feature learning and 
discrimination, even with fewer examples. In contrast, the majority 'Tuta absoluta' class, with 140 
instances detected, yielded a slightly lower mAP of 0.89, reflecting a very good but marginally less precise 
detection performance for the pest-infested tomatoes. This could be attributed to the challenges in 
distinguishing between subtly different states of disease or health, or variations within the 'Tuta 
absoluta' examples themselves. However, this score still represents a high level of accuracy, indicating 
effective learning from the larger sample set provided by this class. 
 

Table 22: Performance metrics for trained AI model on Tuta absoluta dataset. 

Class Images Instances mAP 

All  

80 

 

160 0.92 

Healthy 20 0.96 

Tuta absoluta 140 0.89 

 
Images in Figure 53provide a visual comparison between the ground truth data and the predicted 
bounding boxes generated by the YOLOv8 model. Ground truth refers to the manually annotated 
bounding boxes that accurately delineate the areas affected by Tuta absoluta or indicate healthy tomato 
foliage. The predicted bounding boxes are the areas identified by the YOLOv8 model as either 'Healthy' 
or 'Tuta absoluta' infested. The overlap between these predicted boxes and the ground truth is indicative 
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of the model's precision. The results depicted in Figure 53 below are favourable, demonstrating that the 
model can reliably detect and outline the areas of interest with high accuracy. The tight congruence of 
the predicted bounding boxes with the ground truth suggests that the model's training and fine-tuning 
processes have been successful, enabling it to effectively identify and differentiate between healthy and 
pest-infested tomatoes. 

 

  

 
 

Figure 53: Visual representation of the model's prediction of Tuta absoluta identification. 

8.3.5. Mobile Application  

The Mobile Application which is a plant disease and pests diagnosis tool. It allows farmers to identify 
plant diseases or pests based on an image of a plant taken with the camera of his smartphone. It then 
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provides treatment recommendations to the farmer in various local African languages.  It can run offline 
allowing farmers in areas without network connection to use it. It is a light app that can run on basic 
android smartphones such as Android 8 and more. The AI models that have been trained to identify pest 
infestations are integrated into our mobile application. This integration allows users to harness the 
power of advanced machine learning techniques for on-the-spot pest detection and management in 
agricultural settings.  

 
Figure 54: NESTLER mobile application to identify disease on a tomato plant 

 
Technology used 
The technologies that we use to develop the mobile application are: 

• Mobile app: Java or Flutter; 

• AI programming: Python; 

• ML framework: TensorFlow or Pytorch; 

• Model converter: TensorFlow lite format. 
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9. Knowledge extraction from Remote Sensing 
Services  

In alignment with the specific data requirements for the proposed use cases, there is the need for 

consortium partners to monitor the health of specific crop types (e.g. coffee, tomato), as well as to detect 

changes in land and weather conditions. In this chapter, a description of this thematic information is 

performed, along with further investigation of existing algorithms, methods, and services on how this 

knowledge can be extracted from remote sensing-based data. 

9.1. Thematic Information and Methods 
The analysis and interpretation of remote sensing data rely on a range of algorithms and techniques, 

each tailored to extract specific types of information. For the abovementioned required field insights, a 

short overview of the remote sensing algorithms and methods that are foreseen to be developed and 

utilized in the NESTLER is presented below. 

Crop Health Monitoring  

The primary focus in the NESTLER project is to understand and monitor the health of specified crop types. 

In general, crop health monitoring involves the systematic use of remote sensing data to assess the 

condition, vitality, and potential stress factors affecting crops over agricultural areas. By capturing a 

variety of spectral and spatial information, remote sensing sensors enable the extraction of crucial 

thematic information aiming to optimize yields and ensure the sustainability of cultivation practices.  

Depending on the required level of detail and field size, either satellite or drone multispectral data can 

be utilized for the extraction of the below thematic information: 

Table 23:Crop health information extracted from remote sensing.  

Thematic 
Layers 

Description Methods/Algorithms 

Crop Health 
Mapping 

Crop field is zoned between 
healthy and stressed vegetation. 

Calculation of spectral indices (e.g. Normalized 
Difference Vegetation Index, Enhanced 
Vegetation Index) and application of supervised 
classification algorithms. 

Growth Stage 
Monitoring 

Tracks the growth stages of crops. 
It can identify anomalies in 
vegetation patterns due to e.g. 
diseases or pest infestations. 

Time series analysis of spectral indices (e.g. 
Normalized Difference Vegetation Index, 
Enhanced Vegetation Index). 

Soil Moisture 

Monitors soil moisture content, 
aiding in irrigation management 
and detection of water stress in 
crops. 

Calculation of spectral indices (e.g. Normalized 
Difference Water Index) and application of 
supervised classification algorithms. 
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Figure 55: Vegetation health mapping for January 2013 (left) and April 2013 (right) in Uganda. 

Land Conditions Monitoring 
Shifting the focus to changes in land conditions, the thematic information encompasses the dynamic 

landscape of agricultural territories. The consortium aims to monitor alterations in land cover, including 

the identification of crop fields, fallow lands, and potential land-use changes close to the cropland 

boundaries. By leveraging remote sensing data, the following thematic layers can be extracted within a 

buffer zone from the specified crop fields/areas by using multispectral or thermal infrared imagery, 

depending on the required information: 

Table 24: Land conditions information extracted from remote sensing. 

Thematic Layers Description Methods/Algorithms 

Land Cover 
Change 
Detection 

Detects alterations in land use 
over time. 

Supervised land cover classification (involves 
training the algorithm with known data points 
(training samples) to classify unknown areas. 
Common algorithms include Random Forest, 
and K-Nearest Neighbors (KNN).) 

Land Surface 
Temperature 

Measures the temperature of 
the Earth's surface, by 
providing insights into heat 
distribution. 

Application of radiometric calibration to the 
thermal infrared bands of Landsat 8/9 
available imagery, conversion to Brightness 
Temperature values, and calculation of Land 
Surface Temperature layer (in °C).  

Water Bodies 
and Wetlands 
Monitoring 

Observes changes in water 
bodies, including lakes, rivers, 
and wetlands, supporting in 
water resource management 
and potential flood risk 
assessment. 

Calculation of spectral indices (e.g. Normalized 
Difference Water Index) and application of 
supervised classification algorithms. 
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9.2. Weather Remote Sensing Services 
Understanding the impact of weather conditions on agriculture forms another critical aspect of thematic 

information. The use cases require methods to extract knowledge related to temperature variations, 

precipitation levels, and other meteorological factors to monitor their potential effects on crop growth 

and health. The thematic information derived from satellite-based weather data aids in making informed 

decisions regarding irrigation scheduling, e.g. based on temperature, precipitation, and/or humidity 

forecasts, pest management, and support in mitigation plans to avoid the impact of extreme weather 

events in the face of changing climatic conditions. 

For these reasons, weather satellite data can be added as additional layers to the NESTLER platform. 

They can work as basemap over the use case areas for visualization purposes, supporting the weather 

insights derived from the IoT sensors installed in the fields. In the following table, an overview of 

available weather and climatological services is presented considered to be used in NESTLER.  

Table 25: Overview of available weather and climatological services.  

Service Description Thematic Layers 

OpenWeatherMap 
Provision of real-time and 
forecasting data on the 
main weather data. 

• Current weather (temperature, min 
temperature, max temperature, 
atmospheric pressure, humidity, wind 
speed/direction, cloud coverage, rain) 

• 3-hour weather forecast for 5 days 

answr.space 

Provision of natural 
disaster risk layers 
derived from 40+ years of 
historical data. 

• Drought Probability 
• Flood Risk 
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Figure 56: Flood risk overlayed by agricultural parcels derived from answr.space platform. 
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10. Conclusion  
This report has thoroughly presented the IoT sensors, devices, and remote sensing methods, 

emphasizing their importance for effective agricultural monitoring in the NESTLER project. It describes 

the data requirements and preconditions set by pilots in African countries and demonstrates in detail 

how these needs are met by the IoT sensors/devices and remote sensing methods used in the NESTLER 

project. Those technologies can be used for crop cultivation, livestock, and aquaculture monitoring.  

The remote sensing solutions implemented by the NESTLER project are also elaborated upon. This 

approach includes the use of satellites and drones. The document presents the potential satellite data 

intended for project needs, as well as the Smart NESTLER drone, which is equipped with a multispectral 

camera. Additionally, methods and techniques capable of extracting valuable information from remote 

sensing data are listed.  

It should be noted that the SynField ecosystem is a Synelixis product that has numerous installations in 

Greece and abroad, aka in Denmark, Germany, France, Finland, Italy, Lithuania, Netherlands, Spain, 

Serbia, and India (in collaboration with TATA Advanced Systems). Moreover, in the course of the NESTER 

project, SynField has been installed in Ethiopia, Camerron, Nigeria, Rwanda, Kenya and Uganda. As a 

result, the exploitation potential for Synelixis (NESTLER coordinator) is significant. Within the NESTLER 

project, the SynField Head nodes X3 have been significantly enhanced. Various embedded SW bugs have 

been corrected and over-the-air-upgrade is now supported. Most important, the SynField head node 

embedded SW has been extended to support up to 16 peripheral nodes via LoRA connectivity and 4 new 

low-cost air temperature/humidity and soil moisture sensors have been integrated to support the 

NESTLER pilots with a sustainable and future proof solution. Moreover, integration with RapidNet Ad-

hoc Mesh and Data Aggregator solution has been achieved.  

With respect to the SynAir, the subsystem has fully redesigned and the roduct has been reoriented from 

Smart City Applications to Livestock monitoring applications. The new design supports more sensors, 

along with a new range of sensors such as O3 and NH3.  

With respect to the SynWater subsystem, this is a fully new product. It has been designed based on 

NESTLER pilot requirements and specification, and has been implemented to fulfil the specific NESTLER 

pilot needs. Extensions to SynWater are planned within the second phase of NESTLER project. 

The Crop Quality monitoring system implemented by UCL is a completely new solution that has been 

design and implemented within NESTLER project. It is important to note that the system has already two 

circles of design: a proof of concept and a pre-product version.     

Additionally, the first version of AI algorithms that process the collected data is described, with some 

results showcased. Specifically, the AI algorithms for livestock and aquaculture monitoring, as well as for 

pest infestation detection, are detailed.  

The collected data from various IoT sensors and devices as well as the satellite data will be further 

proceed by the AI algorithms developed in WP4. The final version of remote sensing technologies, multi 
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-modal data aggregation protocols and AI methods, that utilize this data, will be presented in D3.2 

“NESTLER implementation of data aggregation protocols and AI algorithms” due at the end of month 28.  
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Annex A 
Table 26: CFDS Tab Requirements 

Chicken Farm Number of described classes 

Number of 
annotated 
images per 
class (frames, 
audiofiles) 

Total video/ 
audio 
content 
(hours) 

System functionality when 
training with given Dataset 

1. Dataset Basic 

Classification by flock mobility (average speed 
of hens): 
1 - < Normal 
2 - Normal 
3 - > Normal  
 
Classification based on real-time activity 
1 – Resting 
2 – Standing 
3 – Sleeping 
4 – Eating 
5 – Itching 
6 – Walking 
7 – Running 
8 – Dead? 
 

1 – 50 000 
2 – 30 000 

1 – 80 h 
2 – 140 h 

- Classification of overall flock 
health by average mobility of 
hens as an entire flock 

- Classification of the flock 
based on the abnormal 
behavior of hens (insufficient 
amount of normal activities, 
excess of abnormal activities) 

2. Dataset 
Standard 

Classification by flock mobility (average speed 
of hens): 
1 - < Normal 
2 - Normal 
3 - > Normal 
 
Classification based on real-time activity 
1 – Resting 
2 – Standing 
3 – Sleeping 
4 – Eating 
5 – Itching 
6 – Walking 
7 – Running 
8 – Dead? 
 
Classification by external features 
1 – Healthy  
2 – Dirty Bottom 
3 – Feather fluff 

1 – 50 000 
2 – 30 000 
3 – 30 000 

1 – 80 h 
2 – 140 h 
3 – 90 h 

- Classification of overall flock 
health by average mobility of 
hens as an entire flock 

- Classification of the flock 
based on the abnormal 
behavior of hens (insufficient 
amount of normal activities, 
excess of abnormal activities) 

- Classification of the flock by 
the presence of hens with 
visually distinctive features 
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3. Dataset Ultra 

Classification by flock mobility (average speed 
of hens): 
1 - < Normal 
2 - Normal 
3 - > Normal 
 
Classification based on real-time activity 
1 – Resting 
2 – Standing 
3 – Sleeping 
4 – Eating 
5 – Itching 
6 – Walking 
7 – Running 
8 – Dead? 
 
Classification by external features 
1 – Healthy  
2 – Dirty Bottom 
3 – Feather fluff 
 
Classification by vocalization of hens: 
1 – Healthy  
2 – Abnormally quiet 
3 – Abnormally loud 
4 – Abnormal sounds (sneezing) 

1 – 50 000 
2 – 30 000 
3 – 30 000 
4 – 80 000 
5 – 800 files х 
90 sec 

1 – 80 h 
2 – 140 h 
3 – 90 h 
4 – 250 h 
5 – 40 h 
audio 

- Classification of overall flock 
health by average mobility of 
hens as an entire flock 

- Classification of the flock 
based on the abnormal 
behavior of hens (insufficient 
amount of normal activities, 
excess of abnormal activities) 

- Classification of the flock by 
the presence of hens with 
visually distinctive anomalies 

- Classification of abnormal 
vocalization of hens 

 
 

Table 27: FFDS Tab requirements 

Fish Farm 
Number of described 
classes 

Number of 
annotated 
images per 
class (frames, 
audiofiles) 

Total 
video/ 
audio 
content 
(hours) 

System functionality when training 
with given Dataset 

1. Dataset Basic 

Classification by herd 
mobility (average speed of 
fish): 
1 –  < Normal 
2 – Normal 
3 –  > Normal 
 
Classification of location: 
1 –  Near the surface 
2 –  At medium depth 
3 – At depth 

1 – 20 000 
2 – 10 000 

1 – 50 h 
2 – 70 h 

- Classification of overall herd health 
by average mobility of fish as a herd 
and localization of fish in different 
position. 
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2. Dataset Standard 

Classification by herd 
mobility (average speed of 
fish): 
1 –  < Normal 
2 – Normal 
3 –  > Normal 
 
Classification of location: 
1 – Near the surface 
2 – At medium depth 
3 – At depth 
 
Classification based on real-
time activity 
1 – Resting 
2 – Sleeping 
3 – Eating 
4 – Swimming 
5 – Dead 

1 – 20 000 
2 – 10 000 
3 – 30  000 

1 – 50 h 
2 – 70 h 
3 – 60 h 

- Classification of overall herd health 
by average mobility of fish as a herd 
and localization of fish in different 
position. 

- Classification of the herd based on 
the abnormal behavior of fish  
(insufficient amount of normal 
activities, excess of abnormal 
activities) 

3. Dataset Ultra 

Classification by flock 
mobility (average speed of 
fish): 
1 –  < Normal 
2 – Normal 
3 –  > Normal 
 
Classification of location: 
1 –  Near the surface 
2 –  At medium depth 
3 – At depth 
 
Classification based on real-
time activity 
1 – Resting 
2 – Sleeping 
3 – Eating 
4 – Swimming 
5 – Dead 
 
Classification by external 
features 
1 – Healthy  
2 – Unhealthy 

1 – 20 000 
2 – 10 000 
3 – 30 000 
4 – 30 000 

1 – 50 h 
2 – 70 h 
3 – 60 h 
4 – 90 h 

- Classification of overall herd health 
by average mobility of fish as a herd 
and localization of fish in different 
position. 

- Classification of the herd based on 
the abnormal behavior of fish  
(insufficient amount of normal 
activities, excess of abnormal 
activities) 

- Classification of the herd by the 
presence of hens with visually 
distinctive anomalies 

 

 


